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Real-time confinement following a quantum
quench to a non-integrable model
Marton Kormos1, Mario Collura2, Gabor Takács1,3 and Pasquale Calabrese2*
Quarks cannot be observed as free particles in nature because
they are confined into baryons and mesons, as a result of
the fact that the strong interaction between them increases
with their separation. However, it is less known that this
phenomenon also occurs in condensed matter and statistical
physics as experimentally proved in several quasi-1D com-
pounds1,2. Most of the theoretical and experimental studies so
far concentrated on understanding the consequences of con-
finement for the equilibrium physics of both high-energy and
condensed matter systems. Here, instead we show that con-
finement has dramatic consequences for the non-equilibrium
dynamics following a quantum quench and that these e�ects
could be exploited as a quantitative probe of confinement.

A global quantum quench is the non-equilibrium dynamics
initiated by a sudden change of a parameter in the Hamiltonian of
an isolated quantum system, a protocol that is routinely engineered
in cold-atom experiments3–11. According to a by now standard
picture12, the initial state acts as a source of quasiparticle excitations.
A quasiparticle of momentum p moves with velocity vp and carries
quantum correlations through the systems. If there is a maximum
speed of propagation vmax≥ vp (for example, as a consequence of
the Lieb–Robinson bound13), all connected correlations at distance
` vanish for times t<`/2vmax (ref. 12) and the entanglement entropy
of an interval of length ` grows linearly in the same time window14.

How can confinement change qualitatively the spreading of cor-
relations? Exactly as in the standard scenario, the initial state emits
pairs of quasiparticles starting off in opposite directions. However,
these are eventually turned back by the confining potential, leading
to an oscillatory behaviour as shown in Fig. 1. In analogy to strong
interaction, the bound states formed by this process are called
mesons. Mesons produced after a quench typically move much
slower than the elementary quasiparticles due to their larger mass.

Confinement takes place in one of the paradigmatic models of
statistical mechanics, the Ising chain in both transverse (hz ) and
longitudinal (hx) magnetic fields with Hamiltonian
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where the coupling J sets the energy scale and σ αj are the Pauli
matrices. This model has been engineered with cold atoms15 and
quench protocols have also been implemented9.

For hx = 0, the Hamiltonian (1) is diagonalized by a mapping
to free fermions (see Supplementary Information). For hz < 1 the
system is in the ferromagnetic phase where the massive fermions
are freely propagating domain walls separating domains of opposite
magnetization. Switching on a non-zero hx induces a linear potential

between pairs of domain walls confining them intomesons16. In this
Letter, we report numerical results for several observables showing
that the non-equilibrium quench dynamics is drastically altered by
confinement.

Expectation value of the order parameter
We first consider the time evolution of the magnetization 〈σ x(t)〉
that in the integrable case (hx = 0) decays exponentially to zero17
(see Supplementary Information). For non-zero hx , we report
the numerical data for 〈σ x(t)〉 in Fig. 2 for two representative
quenches. It is evident that even a small longitudinal field alters
substantially the dynamics, turning the exponential relaxation into
an oscillatory behaviour with numerous frequencies18. The power
spectrum presented in Fig. 2 shows that the dominant frequencies
are compatible, to a surprising high degree of accuracy, with the
masses of the mesons and their differences.

The two-point function shows the clearest signature of
confinement manifested in a dramatically altered light-cone
structure. In Fig. 3a we report the equal-time connected correlation
function 〈σ x

1 σ
x
m+1〉c for the quench from the fully ferromagnetic

state to hz=0.25 and varying hx from 0 to 0.4. If hx=0, we recover
the integrable dynamics with a clear light-cone spreading. For
small hx=0.025 the correlation follows qualitatively the integrable
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Figure 1 | Pictorial semiclassical picture of a meson state in the Ising
model. Two counter-propagating domain walls bounce back and forth
because of a confining interaction.
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Figure 2 | Time evolution of the longitudinal magnetization. a,b, 〈σ x(t)〉 after quenching from hz=0.5, hx=0 to hz=0.25 and hx=0.1, 0.2 (the result for
hx=0 is shown for comparison). Lines are iTEBD results; symbols are exact diagonalization results for L=8, . . . , 12. Notice the weakness of finite-size
e�ects: the iTEBD data for infinite chains are almost indistinguishable (up to a given time) from the exact diagonalization results. c,d, Power spectrum of
the data in a and b. The vertical lines show the meson masses mi and their di�erences mij.

behaviour for short times, but then it drastically slows down and
bounces back. Further increasing hx , the region with light-cone
propagation shrinks to an almost invisible portion of the spacetime.
This effect can be explained by considering that for a quench with
hx=0 the initial state can be written as17

|ψ0〉=
∏
k>0

(1+ iK (k)a†
ka

†
−k)|0〉 (2)

in terms of the post-quench domain wall excitation a†
k . This formula

quantifies the fact that the initial state can be written in terms of
pairs of particles with opposite momenta and K (k) is the amplitude
of production of these pairs (the exact dependence of K (k) on k
is given in Supplementary Information, but this is inessential for
the following). Adding a field hx confines the domain walls into
mesons. When K (k) is small, the state is dominated by the linear
terms that contain only (k,−k) domain walls pairs that get confined
into mesons at rest. Quadratic terms (and higher order ones) lead
to propagating mesons, but they are substantial only when K (k) is
large enough. These have velocities that are significantly different
from those of the domain walls (see Supplementary Information).

For the quench in Fig. 3a, K (k)� 1 for all momenta and
practically only zero-momentum mesons are formed. Zooming in
the ‘white’ region apparently without signal in Fig. 3a, traces of
mesons with non-zero velocities should be visible. This is done
in Fig. 3b where the same connected correlation is displayed on
a different intensity scale. The signal in Fig. 3b is three orders of

magnitude smaller than that in Fig. 3a and shows a feeble light cone
characterized by a velocity different from that of the domain walls.
The maximummeson velocity describes incredibly well the slope of
the light cone for all values of hx .

As further supporting evidence for the above scenario, in Fig. 3c
we report connected correlations for a large quench (withK (k)�1)
from the paramagnetic phase to the ferromagnetic confining one.
In this case, given that mesons with non-zero velocities are formed
with high probability, the light cones are visible without zooming,
and their slopes correspond to the maximal velocity of the mesons.
A crucial consistency check of the validity of the overall scenario is
that for quenches to the paramagnetic (non-confining) phase with
hx 6=0 there is no radical change in the light cone as shown in Fig. 3d.

Similarly, the connected correlation function of the transverse
component of the spin also reflects the change of the light cone
due to the modified velocity of the mesons (see Supplementary
Information). Furthermore, for quenches from and to several other
values of the magnetic fields the overall picture is unchanged, so our
conclusions are very general and not limited to the reported cases.

Entanglement entropy provides another smoking gun for the
quasiparticle propagation and light-cone effects14. For zero hx ,
we observe in Fig. 4 a linear growth in time of the half-chain
entanglement entropy in agreement with the known exact results19.
By turning on the interaction hx , the growth of the entanglement
entropy for quenches within the ferromagnetic phase is strongly
slowed down and, after a transient, it appears to oscillate around a
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Figure 3 | Connected longitudinal spin–spin correlation function 〈σ x
1 σ x

m+1〉c. a, Quench from hx=hz=0 to the ferromagnetic phase with hz=0.25 and
with varying hx=0, 0.025, 0.05, 0.1, 0.2, 0.4. The light cone disappears already for very small interaction hx. b, The same as in a but on a di�erent scale: the
plotted signal is around 10−3 times the one in a and the orange regions represent out of range values of the correlation function. The dashed and solid lines
correspond to the maximal velocity of the domain walls and of the lightest meson, respectively. c, Absolute value of the correlation function for a quench
from the paramagnetic phase (hz=2, hx=0) to the ferromagnetic one (hz=0.25, varying hx). d, Quench within the paramagnetic phase from hz=2 and
hx=0 to hz= 1.75 and varying hx. While in the confining phase the light cone experiences a drastic non-perturbative change, in the paramagnetic phase it
is only perturbatively modified.
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Figure 4 | Time evolution of the half-chain entanglement entropy after a quench to the confining phase with hz =0.25. a, Starting from the ferromagnetic
phase (hz=hx=0), the entanglement saturates also for small hx (greyscale in legend). b, Starting from the paramagnetic phase hz=2, hx=0, the growth
of the entanglement entropy is considerably reduced, and for very large hx it also saturates.

saturation value. The frequencies of these oscillations are in rough
agreement with the meson masses and their differences as reported
in Supplementary Information. This is a consequence of the fact that
mesons are predominantly produced at rest and it is consistent with
the strong suppression of the light cone of the two-point function.
Actually, the small fraction of mesons with non-negligible velocities
should produce a very slow increase of the entanglement that,
however, is too small to be observed numerically. Conversely, for
a quench across the critical point, the growth of the entanglement
entropy is not negligible, but it is considerably reduced due to the
production of many mesons with non-vanishing velocities. Overall,

the data for the entanglement are compatible with the confinement
scenario drawn for the correlations.

Discussions
We have given compelling arguments and numerical evidence prov-
ing that confinement strongly affects the non-equilibrium dynamics
following a quantum quench. The main effect is a dramatic change
of the light-cone structure of correlation functions and entangle-
ment entropy. At the same time, the one-point function oscillates
in time with frequencies equal to the meson masses. These effects
should be easily measurable in cold-atom experiments; corrections
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due to the trapping harmonic potential are expected to be as small as
the finite-size effects we observed. We also showed that the quench
dynamics provides direct access to the meson masses via the power
spectrum of the one-point functions. This ‘quench spectroscopy’
could turn out to be more powerful than standard equilibrium
methods to measure the spectrum.

To conclude, we speculate on a few other consequences and
applications of ourwork. It was noticed some time ago20 that in some
quenches within the Hamiltonian (1) the system does not approach
asymptotically a thermal stationary state as expected from the non-
integrability of the model. A possible explanation is that due to
confinement there are rare states in the spectrum that prevent the
eigenstate thermalization hypothesis21 from being applied. Along
the same line of thought, even if these confined systems eventually
thermalize, the standard prethermalization scenario22,23 for weak
integrability breaking cannot be applied, since a small perturbation
changes not only the long-time asymptotic expectation values, but
completely alters the dynamics even at short timescales.

Finally, confinement is expected to have similar effects also in
higher dimensions and so it is natural to wonder what the con-
sequences are for realistic non-equilibrium situations in quantum
chromodynamics such as the quark–gluon plasma in hadron col-
liders. While even approximate field-theoretical calculations for
strong interactions are beyond our reach, holographic methods
that have been successfully applied to the study of standard light-
cone phenomena24 and to quenches in confining theories25 could be
insightful to understand this fascinating problem.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
The Hamiltonian (1) for hx 6=0 and hz 6=0 is not integrable and the spectrum can
be described only by resorting to various approximations, such as, for example,
field-theoretical ones26–28 that are valid in the vicinity of the critical point hz=1
and hx=0. Here we use a complementary approach: the low-density
approximation of ref. 29, which describes the energy levels very accurately when
the system is far away from the critical point. In the Supplementary Information we
explain how this approach works and we report several pieces of evidence for its
applicability for the values of magnetic fields of interest. This approximation allows
us to calculate all the required properties of the mesons, namely their number,
masses and velocities.

To simulate the time evolution after the quantum quench we use an iTEBD30

algorithm, details of which are reported in the Supplementary Information.
Finally, the entanglement entropy is defined as the von Neumann entropy
SA=−TrρA lnρA of the reduced density matrix ρA of a subsystem A.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the authors on request.
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