
Journal of the Korean Physical Society, Vol. 39, No. 6, December 2001, pp. L0∼L0 Letters

Spectral Functions for Doped Carbon Nanotubes
using the Gross-Neveu Model

Changrim Ahn
∗ and Eunkyung Paik

Department of Physics, Ewha Womans University, Seoul 120-750

(Received 30 August 2001)

We use integrable and conformal quantum field theories to compute the single-particle spectral
function of armchair-type carbon nanotubes away from half-filling. The gapless charge sector is
described by the Luttinger model and is solved by using conformal field theory. The other sectors
are known to possess SO(6) symmetry at low temperature and are described by the SO(6) Gross-
Neveu model. The correlation function of this massive sector is computed using exact form factors.
Due to intermediate particle states, the spectral function is exactly determined by the given form
factors between certain threshold energies. We derive an exact expression explicitly for certain
values of the Luttinger parameters at low frequency to illustrate the power of this approach.

I. INTRODUCTION

Low-dimensional quantum field theories (QFTs) are
actively applied to various strongly interacting con-
densed matter systems. The main advantages of this
approach are as follows: the continuum theories can de-
scribe the universality class of the lattice models which
restrict the microscopic dynamics of strongly correlated
electrons to specific form of lattice interactions. The
universality attained by the QFTs, therefore, can show
physical properties independent of microscopic mod-
els. Another advantage is their analytic computational
power. The perturbative solutions of the QFTs have
been used to understand the behavior of the systems
from high to low temperatures.

However, this QFT approach has a fundamental dif-
ficulty for applications to a strongly correlated system
because the perturbative method fails in these cases
due to the strong interactions. Even numerical analy-
sis is not easy for the continuum theories. Therefore,
this area can be a very interesting theoretical laboratory
where non-perturbative QFTs can be tested and applied
with connection to experiments. Up to now truly non-
perturbative QFTs have been realized only in (1 + 1)-
dimensional space-time. In this dimensionality, there
are certain classes of the QFTs, called integrable QFTs,
whose scattering amplitudes are exactly known. In ad-
dition, very efficient theoretical tools which can extract
physical quantities out of the S-matrices have been de-
veloped. The form factor approach is one of these and
can generate the correlation functions to high accuracy
and sometimes exactly in momentum space.
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The low dimensionality which the integrable QFTs are
restricted to is not a major huddle any more thanks
to recent progress in experimental technologies. Many
new and interesting materials can be described effec-
tively as one-dimensional objects. Single-walled carbon
nanotubes are a typical example [1]. In addition to var-
ious potential applications and theoretical interests [2],
these materials show Mott insulator properties and can
be described by an interesting theoretical model, namely,
the two-leg Hubbad ladder. In this model, electrons can
hop in inter- and intra-chains and have on-site Coulomb
interactions. It has been noticed that armchair (N,N)
nanotubes can be mapped into Hubbard ladders with the
effective ladder coupling [3,4]

ueff =
u

N
(1)

where u is a (strong) on-site Coulomb interaction of the
nanotubes. Therefore, the effective QFTs for strongly
interacting carbon nanotubes can be obtained by us-
ing the perturbative computations for Hubbard ladders.
Another interesting feature is that the Hubbard ladders
show a phase diagrams very similar to those of cuprate
high TC superconductors. In particular, the Mott in-
sulator phase of the Hubbard ladders arising from the
Coulomb repulsion can describe qualitatively the con-
troversial pseudo-gap regions in a phase diagram charac-
terized by both spin and charge gaps, as well as d-wave
pairing.

In this paper, we will compute exact single-particle
spectral function of doped carbon nanotubes by using
the SO(6) Gross-Neveu (GN) model [5], a well-known
integrable QFT, along with the Luttinger model for a
gapless charge sector. The non-perturbative S-matrix
and the particle spectrum can be used to compute the
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form factors and the correlation function. In particular,
we derive an explicit spectral function at low frequency,
which is of most interest, and point out the threshold ef-
fects arising from the particle spectrum of the GN model.
Our result shows a qualitative difference from the case
at half-filling described by the SO(8) GN model [6,7].

II. TWO-LEG HUBBARD LADDER AT
HALF-FILLING

We begin with non-interacting electrons hopping on a
two-leg ladder described by the Hamiltonian

H0 = −
∑
x,σ

{
ta†1σ(x+ 1)a1σ(x) + ta†2σ(x+ 1)a2σ(x)

+ t⊥a
†
1σ(x)a2σ(x) + h.c.

}
, (2)

where al (a†l ) is an electron annihilation (creation) op-
erator on leg l (l = 1, 2) of the ladder, x is a discrete
coordinate along the ladder and, σ =↑, ↓ is a spin index.
The parameters t and t⊥ are hopping amplitudes along
and between the ladder’s rungs.

Since the effective interactions become weak, as men-
tioned in Eq. (1), one can diagonalize the unperturbed
Hamiltonian H0 by bonding/antibonding pairs:

cjσ =
1√
2

(a1σ + (−1)ja2σ). (3)

At half-filling with one electron per site, particle-hole
symmetry requires that the Fermi velocities, vFj , of the
two bands j = 1, 2 be equal. For the low-energy be-
havior, we can linearize the cjσ’s near the Fermi surface
kFj :

cjσ ∼ cRjσeikFjx + cLjσe
−ikFjx, (4)

where R and L correspond to right and left moving
modes about the Fermi surface. In terms of these op-
erators, the H0 becomes

H0 = vF

∫
dx
∑
jσ

[
c†Rjσi∂xcRjσ − c

†
Ljσi∂xcLjσ

]
. (5)

The next step is to bosonize the c’s:

cPjσ = κPjσe
iφPjσ , P = +,− = R,L. (6)

Here, κPjσ are the Klein factors.
To separate charge and spin, one can define new sets

of bosons:

φP1 =
1
2

(φP1↑ + φP1↓ + φP2↑ + φP2↓),

φP2 =
1
2

(φP1↑ − φP1↓ + φP2↑ − φP2↓),

φP3 =
1
2

(φP1↑ − φP1↓ − φP2↑ + φP2↓),

φP4 =
P

2
(φP1↑ + φP1↓ − φP2↑ − φP2↓). (7)

If one further refermionizes these new bosons,

ΨPa = κPae
iφPa , a = 1, 2, 3, (8)

ΨP4 = PκP4e
iφP4 , (9)

and introduces Majorana fermions defined by

ΨaP =
1√
2

(ψ2a,P + iψ2a−1,P ), (a = 1, ..., 4), (10)

one can write the free Hamiltonian as follows:

H0 =
∫
dx

8∑
a=1

(
ψ†Rai∂xψRa − ψ

†
Lai∂xψLa

)
. (11)

The interactions between electrons, in general, break
the large symmetry of the free fermions down to U(1)×
SU(2), i.e., total charge and spin conservation. Since we
are interested in low-energy physics, we can keep only the
marginal interactions, namely, the four-fermion interac-
tions. It turns out that there are nine four-fermion terms
which preserve charge and spin. It is remarkable that an
one-loop renormalization group (RG) analysis show that
the nine coupling constants converge into a fixed ray in
the infrared (low energy) limit [6]. Therefore, the low-
energy effective QFT for the carbon nanotubes is the
SO(8) GN model,

Hint = g
∑

1≤b<a≤8

GabRG
ab
L , GabP = iψa,Pψb,P . (12)

III. AWAY FROM HALF-FILLING

Most real physical systems have some kind of disor-
der or impurity. Being Mott insulators, the carbon nan-
otubes become conductors when doped because the U(1)
charge sector becomes gapless. Important interaction ef-
fects arise from processes where both the two incoming
and the two outgoing particles are all at the Fermi en-
ergy. The Hamiltonian density of the interaction then
is

hint = g1,abcdψ
†
Rsaψ

†
LtbψRtcψLsd

+ g2,abcdψ
†
Rsaψ

†
LtbψLtcψRsd. (13)

The first and the second terms describe backward (g1)
and forward (g2) scattering between particles at the
Fermi surface, respectively. Away from half-filling, no
Umklapp terms appear. Here, the band indices a, b, c,
and d describe either bonding (0) or anti-bonding (π)
combinations of the Hubbard ladders. Summation over
the band and the spin indices, s and t, is understood in
Eq. (13). The interactions allowed by momentum and
energy conservation are

g1,0000 = g1,ππππ ≡ g11, g1,00ππ = g1,ππ00 ≡ g12,

g1,0π0π = g1,π0π0 ≡ g13, g2,0000 = g2,ππππ ≡ g21,

g2,0ππ0 = g2,π00π ≡ g22, g2,00ππ = g2,ππ00 ≡ g23.
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The big SO(8) symmetry at half-filling in the low-
energy limit is broken to a smaller, but still big, sym-
metry, namely, U(1) × SO(6). The low-energy effective
QFT can be expressed in terms of the bosons introduced
in (7) [8]. The non-interacting Hamiltonian is the Lut-
tinger liquid model

H0 =
4∑
a=1

Ha, (14)

where

Ha =
πvF

2

∫
dx
[
(1 +Ma) Π2

a

+
1
π2

(1−Ma) (∂xϕa)2

]
, (15)

and the Luttinger parameters are given by

M2,3 = (g11 ± g13)/2πvF , M1,4

= M2,3 − (g21 ± g22)/πvF . (16)

The interaction Hamiltonian becomes

Hint =
1
π2

∫
dx [(g23 − g12) cos 2ϑ4 cos 2ϑ3

+ g23 cos 2ϑ4 cos 2ϕ3 + g11 cos 2ϕ2 cos 2ϕ3

+ g12 cos 2ϑ4 cos 2ϕ2 − g13 cos 2ϕ2 cos 2ϑ3] , (17)

where the ϑa’s are the dual fields to ϕa defined by

Πa =
1
π
∂xϑa. (18)

These fields are related to the bosons defined previously
by

ϕa = φRa + φLa, ϑa = φRa − φLa. (19)

According to the RG computations [8], the phase di-
agram is divided by two critical lines g1i = 0 and
g1i = 2g2i. In particular, in the “d-wave superconductor
phase” where 0 < g1i < 2g2i, a numerical investigation
and one-loop RG equations show that the parameters
take the asymptotic form

gij(l) =
g0
ij

lc − l
(20)

with

−g0
11 = g0

12 = g0
23 =

1
4
,

g0
13 = 0, g0

21 = − 3
16
, g0

22 =
1
16
.

One can notice from Eq. (16) that M2 = M3 = −M4.
If one defines ϑ4 = ϕ̃4 and ϕ4 = ϑ̃4, one finds that the
three Luttinger parameters become identical and that, in
the infrared limit, the interacting Hamiltonian becomes

Hint =
g11

π2

∫
dx [cos 2ϕ̃4 cos 2ϕ3 + cos 2ϕ2 cos 2ϕ3

+ cos 2ϕ̃4 cos 2ϕ2] . (21)

In terms of the Majorana fermions introduced in Eqs. (8)
and (10), this corresponds to the SO(6) GN model along
with the U(1) Luttinger model for the charge degrees
of freedom ϕ1, ϑ1. Therefore, the effective QFT of the
doped Hubbard ladder is given by

H = H1 +H0 + g
∑

3≤b<a≤8

GabRG
ab
L . (22)

The GN model is an integrable QFT with interacting
Majorana fermions with a dimensionless coupling con-
stant g. Dynamical symmetry breaking produces the
fermion mass while preserving an infinite number of con-
servation laws [9]. The on-shell particle spectrum of the
SO(6) GN contains kinks of mass m ∝ e−1/g belonging
to the spinor representation and their bound states, the
Majorana fermions of mass mb =

√
2m, belonging to the

fundamental representation of SO(6) [10]. There are no
higher-rank tensors present in SO(6).

Due to the integrability, the number and energy-
momenta of the particles in a scattering process are pre-
served, and the scattering amplitudes are factorized into
two-particle S-matrices which, in turn, satisfy the Yang-
Baxter equation. The Yang-Baxter equation along with
symmetry, unitarity, and the crossing relation can deter-
mine the S-matrices of the GN model [10]. The S-matrix
is a fundamental quantity in the integrable QFTs since
it can be used to compute off-shell quantities, such as
correlation functions, as well as on-shell quantities.

Computing correlation functions exactly is extremely
difficult even for integrable QFTs away from criticality.
The method in this paper is to use the form factor ex-
pansions including only a few leading contributions. Al-
though this method does not provide exact correlation
functions, it has been well-known that this expansion
converges very rapidly and becomes accurate enough for
practical purpose if one includes first few leading contri-
butions. Another important feature of the form factor
expansion is that only a finite number of terms are left
in Fourier-transformed correlation functions like spectral
functions of massive integrable QFTs, and they become
exact due to the threshold effect of creating intermedi-
ate particle states. Therefore, the correlation function in
momentum space becomes exact if one includes only a
few leading terms in the low-frequency domain.

The form factors are matrix elements of a local op-
erator between vacuum and on-shell particle states [11].
Consider a two-point correlation function

GO(x, t) = 〈0|T [O(x, t)O(0, 0)]|0〉. (23)

Using the completeness of on-shell particle states, one
can insert the resolution of the identity between the two
O’s to obtain

GO(x, t) =
∑
I

∣∣〈0|O|I〉∣∣2eitEI+ixPI , (24)
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where |I〉 denotes on-shell states and the sum over I
includes a sum and an integration over the particle con-
tents and their energy-momenta. In two-dimensional rel-
ativistic QFTs, it is convenient to define the rapidity
variable θ by

E = m cosh θ, P =
m

v
sinh θ. (25)

EI and PI are the total energy and momentum of the
on-shell state. The matrix element is the form factor.
To be more specific, one can write the form factor as a
function of the particle identities and their rapidities as
follows:

FO(θ1, θ2, . . . , θn)a1,a2,...,an

= 〈0|O(0, 0)|Aa1(θ1), Aa2(θ2), . . . , Aan(θn)〉. (26)

Here, Aa(θ) is a particle state of type a.
The form factors satisfy some functional relations with

the S-matrices. In a few cases, generic form factors have
been derived from these “axioms” [12]. In most inte-
grable QFTs, it is straightforward to derive the form fac-
tors up to two-particle states from the exact S-matrices.
We will compute the form factors up to two-particle
states for the SO(6) GN model in this paper.

IV. SPECTRAL FUNCTION

Being a Mott insulator, the Hubbard ladder away from
half-filling becomes a conductor with gapless charge ex-
citations. One can compute, for example, the current-
current correlation function using the conformal field
theory based on the Luttinger Hamiltonian. From Eq.
(7), one can see that ϕ1 is the gapless charge degree of
freedom. The Hamiltonian can be written as

H1 =
πvF

2

∫
dx

[
(1 +M1)Π2

1 +
1
π2

(1−M1)(∂xϕ1)2

]
.

(27)

This is the c = 1 conformal field theory whose correlation
functions can be easily computed. In particular, the two-
point correlation function of the U(1) current operator
(P = ±),

JP (x, t) = ∂xP φP1, xP = vct+ Px, (28)

can be obtained as

〈JP (x, t)JP (0, 0)〉 =
1

(vct+ Px)2
. (29)

Here, the renormalized velocity is given by

vc = vF

√
1−M2

1 . (30)

It is more complicated to compute the single-particle
spectral function. For this, we should first consider the

single-particle Green’s function. Since the electronic ex-
citations around the Fermi point correspond to a sepa-
ration of the charge degree of freedom and SO(6) Gross-
Neveu kinks, one can write the electron operators as fol-
lows:

cPjσ = κPjσe
−iφP1(x,t)/2ψα(x, t), (31)

where ψα is the SO(6) kink operator with spinor index
α obtained by fermionizing the three bosons φPi with
i = 2, 3, 4. The single-particle Green’s function can be
written as

GPj(k, ω) =
∫
dxdte−ikx−iωt

× 〈0|T
[
c†Pjσ(x, t)cPjσ(0, 0)

]
|0〉, (32)

where T is the time ordering.
The correlation function becomes factorized into two

parts:

〈0|T
[
c†Pjσ(x, t)cPjσ(0, 0)

]
|0〉

= 〈eiφP1(x,t)/2e−iφP1(0,0)/2〉
× 〈T (κPαψαP (x, t)κPᾱψᾱP (0, 0))〉. (33)

The first factor can be computed easily from Eq. (27):

〈eiφP1(x,t)/2e−iφP1(0,0)/2〉 =
1

(vct+ Px)ν
, (34)

with

ν =
1
4

√
1 +M1

1−M1
. (35)

To compute the second part, one should use the form
factor expansion introduced in the previous section. The
velocity parameter v′ of the SO(6) Gross-Neveu particles
is given by the Luttinger parameter M :

v′ = vF
√

1−M2. (36)

If we expand the correlator up to the two-particle states,
we get

〈T (κPαψαP (x, t > 0)κPᾱψᾱP (0, 0))〉

=
∫ ∞
−∞

dθ

2π
|〈0|ψαP (0, 0)|Aα(θ)〉|2 eiE1(θ)t+iP1(θ)x

+
∑
aβ

∫ ∞
−∞

dθ1dθ2

2(2π)2
|〈0|ψαP |Aβ(θ2)Aa(θ1)〉|2 eiE2t+iP2x,

where E2 and P2 are the energy and the momentum of
one kink and one fundamental fermion: namely,

E1(θ) = m cosh θ, v′P1(θ) = m sinh θ,
E2(θ1, θ2) = mb cosh θ1 +m cosh θ2,

v′P2(θ1, θ2) = mb sinh θ1 +m sinh θ2.

The form factors can be computed from the exact S-
matrices. The results are as follows: The one-particle
form factor is

〈0|ψα±(0, 0)|Aβ(θ1)〉 = AF e
±iπ/4e±θ/2CαβF (θ) (37)
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Fig. 1. Constant-k scans of ARR(ω, k) as a function of
ω/m. The figures are in the order of k = −m, k = 0, k = m,
and k = 2m.

with

F (θ) =

(
Γ
(

3
4 + iθ

2π

)
Γ
(

3
2 −

iθ
2π

)
Γ
(

3
4 −

iθ
2π

)
Γ
(

3
2 + iθ

2π

))−1/2

× exp

[
−
∫ ∞

0

dx

x
G(x) sin2

(
xθ̂

2π

)]
,

θ̂ = θ + iπ, and

G(x) =
2 cosh(x/4) + e−5x/4

sinhx cosh(x/2)
. (38)

The two-particle form factors are

〈0|ψα±(0, 0)|Aβ(θ2)Aa(θ1)〉 = −AF e±iπ/4(Cγa)αβ
× F±(θ1, θ2)

with

F±(θ1, θ2) =
e±(θ1+θ2)/4

cosh θ12

× exp

[∫ ∞
0

dx

x
G(x) sin2

(
xθ̂12

2π

)]
and θ12 = θ1 − θ2. Here, C and γa are the charge con-
jugation and Dirac matrices, respectively. The constant
AF depends on the normalization, and we set it to be 1.

To derive the spectral functions, we should take the
Fourier transform, Eq. (32), of the single-particle
Green’s function, Eq. (33). For simplicity, we derive
the explicit expression for P = + under the assumption
that M = M1 or vc = v′ = 1. The case vc 6= v′ can be
similarly analyzed with more complicated algebra and
shows a similar qualitative result. To take the Fourier
transform, we change the integral variables to x±. In
terms of these variables, the correlation function of the
charge sector depends only on x+, and the exponential
part is factorized exp(iK+x+ + iK−x−) where

K± =
1
2

(E − ω ± (P − k)) , (39)

with E and P being either E1 and P1 for the one-particle
state or E2 and P2 for the two-particle state. The x−
integral generates the Dirac delta function δ(K−), and
the x+ integral becomes∫

dx+
1
xν+

eix+K+ = Aν |K+|1−ν (40)

with Aν =
√

2
πΓ(1−ν) sin πν

2 for 0 < ν < 1. Using these
results, one can compute each contribution to the spec-
tral function separately. The one-particle contribution
becomes (ω > k)

G
(1)
RR(ω, k) =

Aνm
3

22−ν
(1− s2/m2)1−ν

(ω − k)3−ν H(θ0) (41)

where s2 = ω2 − k2, me−θ0 = ω − k, and

H(z) = exp
[∫ ∞

0

dx

x
G(x)

(
1− coshx cos

(xz
π

))]
.

The two-particle contribution turns out to be

G
(2)
RR(ω, k) =

23+νAνm
3

(ω − k)3−ν

∫ ∞
0

dy
y2(
√

3y2 + 1)
(1 + y4)2

×
[
3 +
√

2(y2 + y−2)− s2

m2

]1−ν

H(2 log y). (42)

The spectral function is given by the imaginary part
of the single-particle Green’s function. For a nonvanish-
ing spectral function, the variable s should be above the
threshold. The threshold for an one-kink state is s = m
while that for a two-particle state (one-kink and one-
bound state) is s = (1 +

√
2)m. The results for s > m

are

A
(1)
RR(ω, k) =

m3Aν sinπν
22−ν

(s2/m2 − 1)1−ν

(ω − k)3−ν H(θ0),(43)

and those for s > (1 +
√

2)m are

A
(2)
RR(ω, k) =

23+νm3Aν sinπν
(ω − k)3−ν

∫ y2

y1

dy
y2(
√

3y2 + 1)
(1 + y4)2

×
[
s2

m2
− 3−

√
2(y2 + y−2)

]1−ν

H(2 log y), (44)

with y1 and y2 being two real solutions (y2 > y1 > 0) of

3 +
√

2(y2 + y−2) =
s2

m2
.

We can summarize that exact single-particle spectral
function as

ARR = A
(1)
RR, 1 <

s

m
< (1 +

√
2),

ARR = A
(1)
RR +A

(2)
RR, (1 +

√
2) <

s

m
< (1 + 2

√
2).

We plot the result in Fig. 1 as a function of ω/m for
various values of k for ν = 0.25. The threshold effects
are clear from the figures.
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In this paper we have shown a way to compute corre-
lation functions based on integrable QFTs. Other phys-
ical quantities for the doped carbon nanotubes can be
approached in this way. Also, carbon nanotubes have
several other phases with different symmetries. It would
be interesting to study these phases using QFT methods.
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