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Abstract

We compute the boundary energy and the Casimir energy for both th%%)(z guantum spin
chain and (by means of the light-cone lattice construction) the massive sine-Gordon model with both
left and right boundaries. We also derive a nonlinear integral equation for the ground state of the sine-
Gordon model on a finite interval. These results, which are based on a recently-proposed Bethe ansatz
solution, are fogeneral values of the bulk coupling constant, and for both diagonalrendiagonal
boundary interactions. However, the boundary parameters are restricted to obey one complex (two
real) constraints.
0 2003 Elsevier B.V. All rights reserved.

PACS: 05.50.+q; 11.10.Kk; 11.55.Ds; 11.25.Hf

1. Introduction

The spin% XXZ quantum spin chain and the sine-Gordon quantum field theory on
a finite interval (i.e., with both left and right boundaries) have applications in statistical
mechanics, condensed matter physics and string theory, and have therefore been studied
intensively, e.g., [1-15]. Much of this work has been restricted to either diagonal boundary
interactions [1-4,7-10] or to special values of the bulk coupling constant [13—-15], because
a solution of the XXZ chain with general (both diagonal and nondiagonal) boundary terms
[5] has not been available. A solution of the latter problem for values of the boundary
parameters obeying a linear constraint has recently been proposed [16—18] and confirmed
numerically [19].
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We exploit here this new solution to compute finite-size corrections to the ground-state
energy of both the XXZ chain and (by means of the light-cone lattice approach [20-22])
the massive sine-Gordon model, in a range of parameter space heretofore not possible. In
particular, we compute the boundary energy and Casimir energy, and we derive a Klimper—
Pearce—Destri—de Vega [23,24] nonlinear integral equation for the ground state of the sine-
Gordon model on a finite interval.

The outline of this article is as follows. In Section 2, we consider the open XXZ quantum
spin chain withN spins. After a brief review of the Bethe ansatz solution [16-18], we
compute the ground-state energy, in particular the corrections of order 1/ahdahd
therefore [26,27], the central charge. In Section 3, we turn to the sine-Gordon model on an
interval of lengthR. We observe that this model contains an additional boundary parameter
|y+ — y—| which has not previously been noted. We analyze the light-cone lattice [9,20-22]
version of this model, which is formally quite similar to the open XXZ chain. We determine
the relation between the lattice and continuum boundary parameters by matching the
boundary (order 1) energies in the corresponding models. We then formulate a nonlinear
integral equation [23,24] for the ground state, and give a corresponding formula for the
Casimir (order 1R) energy. In the ultravioletR — 0) limit, the central charge of the sine-
Gordon model coincides with that of the XXZ spin chain. Our result for the Casimir energy
at the free-fermion point coincides with the result from the TBA approach of Caux et al.
[15]. Moreover, we compute the Casimir energy numerically over a wide range of bulk and
boundary parameters, and track the crossover from the ultraviolet to the infrared regions.
We conclude in Section 4 with a brief discussion of our results and some interesting open
problems.

2. Theopen XXZ quantum spin chain

We begin by briefly reviewing the recently-proposed [16—18] Bethe ansatz solution of
the open spin% XXZ quantum spin chain with both diagonal and nondiagonal boundary
terms. In terms of the parameters introduced in the latter reference, the Hamiltonian is
given by

1 N-1

_ X __x y_y zZ..2

H= E Z (Un On+1 +on On+1 + COShﬂ On 611+1)
n=1

+ sinhp[cotha_ tanhB_o; + cscho_ sechB_ (coshv_oy + i sinhf_a7)
— cothay tanhByof, + cschuy sechB, (costw oy +isinhd oy)] ¢, (2.1)

wheres”*, ¢, 6% are the usual Pauli matricesjs the bulk anisotropy parameter,, S+,
0+ are boundary parameters, aNdis the number of spins. The boundary parameters are
assumed to satisfy the linear constraint

Ol7+/37+06++/3+=:l:(97—9+)+77k, (22)
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wherek is an even integer iV is odd, and is an odd integer ¥ is even. In terms of the
“shifted” Bethe rootdii ;} [19], the energy eigenvalues are given by

d 1
E =sint? ___ —
an::l sinh(it; — ) sinh(i; 4 %)

1 1
+ > sinhn(cothe— 4 tanhB_ + cothay 4 tanhB,) + E(N — 1)coshy, (2.3)
and the Bethe ansatz equations are given by
(sinh(ﬁj + %))21\' sinh(2u; + n) sinh(@; — 4 +a_) coshii; — § + -
sinh(i; — 3) ) sinh(2u; — n) Sinh(ii j + 3 — ) cosh; + 3 — p-
sinh(ii; — 3 + o) coshi; — 3 + B4)
sinh(ij + 3 — ary.) costi; + 3 — B+)

__ﬁ sinh(ii ; — iix + 1) sinh(@ j + iix + 1)
k=1

)
)

sinh(ij — i — n) sinhi j + iix — )’
i=1....M, (2.4)

where the numbet! of Bethe roots is given by

M:%(N—l—}-k), (2.5)

k being the integer appearing in (2.2). The case of diagonal boundary terms [2,4]
corresponds to the limg. — 400, in which case the constraint (2.2) disappears.

We restrict our attention here to the “massless” regime (bulk anisotropy parameter
n purely imaginary, with O< Im#n < 7); and therefore, to ensure Hermiticity of the
Hamiltonian (2.1), we restrict the boundary parameters 6. to be purely imaginary,
and g4 to be purely real. It is convenient to define new bulk and boundary parameters,

n=1iu, oL =ipax, B+ = ub, O+ =iuct, (2.6)

whereu, ax, by, cy are all real, with O< ¢ < . We use the periodicity¢s — oy + 2ri
of the Hamiltonian (2.1) (and in fact, of the full transfer matrix) to restugt to the
fundamental domain-7 + % <SMax <7+ % which implies

1

1
E—v<ai<§~|—v, (2.7)

wherev =2 > 1.
Considering separately the imaginary and real parts of the constraint equation (2.2), we
see that the boundary parameters must in fact satisfy a pair of real constraints
a_+ay ==|c- —cy|+k,
b_+by=0. (2.8)

The absolute values can be introduced without loss of generality, since the preceding sign
is arbitrary.
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The energy eigenvalugsdepend on the parameters only through the absolute value
of their difference|c_ — ¢ |. Indeed, by performing on the Hamiltonian (2.1) a global spin
rotation about the axis, the parameters. are shifted by a constant, i.e., +— ¢+ + const.
In particular, one can eliminate one of these two parametersd{sayvhich results in a
shift of the other {— — c_ — c¢). Hence, the energy depends on the differance c,..
Furthermore, by performing on the Hamiltonian a time-reversal (complex-conjugation)
transformation, the parameters are negated, i.ec4 — —c+. Hence, the energy in fact
depends offc— — c4|.

Let us consider the energy of the ground state of this model as a functivi fafr
large N. The leading (ordetV) contribution, which does not depend on the boundary
interactions, is well known [28]. Our objective here is to compute the boundary (order 1)
and Casimir (order AN) corrections.

2.1. Boundary energy

Let us streamline the notation by defining the basic quantities

_sinhu (.4 2)
sinhp (o — 1)’
i coshu(r + 4)
W) =en(n£ ) = AT 2) 2.9
i =a (145 B 2.9)

The Bethe ansatz Eqgs. (2.4) then take the compact form

€n

€2q_—1(hj)eza, —1(A;)
81+2ib_ (A j)g1+2ib, (Aj)
j=1...M, (2.10)

M
el(Kj)ZNHgl(?»j) —l_[ez(?»j —Aea(hj + Ag),
k=1

where we have séit; = 2 ;, and we use the new parameters introduced in (2.6).

We wish to focus here on tlground state with no holes. Hence, we takeeven, since
states withV odd correspond to excited states with an odd number of holes. Moreover, we
take (see Eq. (2.5))

N

k=1 M=73. (2.11)

According to [19], for this case the Bethe ansatz solution correctly yields the energy of
the ground state, and the shifted Bethe roots corresponding to this state are real. However,
we have subsequently found through further numerical studies of chains with small values
of N that this statement must be qualified: there are regions in the parameter space (2.7)
for which some of the shifted Bethe roots are imaginary (presumably corresponding to
boundary bound states), or for which the Bethe ansatz does not yield the ground state. (See
Fig. 1.) For simplicity, we henceforth restrict the boundary parametets the following

1 We follow the notations used in [10].
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Fig. 1. Domain of boundary parameterg.. For the ruled triangular region, the Bethe ansatz does not give
the ground state. For the shaded regions (including the special case noted in [19] corresponding to the line
at + a— = 1), the Bethe ansatz does give the ground state, but the shifted Bethe roots are not all real. For
the blank regions (in particular, those labeled -1V, as in Eq. (2.12)) the Bethe ansatz gives the ground state, and
all roots are real. (Based on numerical resultsNo& 4, whereb+ andc4 satisfy Eq. (2.8) withk = 1. AsN
increases, the shaded area also increases. We conjecture tNatfaro, only regions I-IV remain unshaded.)

four regions,

1 1+
2<cl:|:<2 v,

Il: §<a+<§+v, E—v<a_<0,

1
I E—v<ai<0,

1 1 1
IV: E—v<a+<0, §<a_<§+v, (2.12)
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for which our numerical results indicate that the Bethe ansatz solution does yield the energy
of the ground state, and the shifted Bethe roots corresponding to this state are all real.

We remark that (2.7) implies that2v < a_ + a; — 1 < 2v; and hence the first
constraint in Eq. (2.8) witth = 1 implies

lc— —cq] < 2v. (2.13)

This condition can always be satisfied, since the Hamiltonian and transfer matrix also have
the periodicitydy — 0+ + 27i, which corresponds toy. — ct + 2v.

In order to compute the energy of the ground state for Iafgeve first determine the
density of (real) Bethe roots for this state. To this end, we take the logarithm of the Bethe
ansatz Egs. (2.10) and obtain

N

hGp=J, J=1....5, (2.14)
where the counting functiok()) is given by
1
h(A) = o 2N +Dqa(V) +r1(A) + g2q_—1(A) — riy2ip_(A)
N/2
+ q2a,—1(X) — r12ip, (A) — Z[qz(l — M) + q200+ )| } (2.15)
k=1
whereg, (1) andr, (1) are odd functions defined by
gn(A) =7 +ilne, () = 2tarm(cot(nu /2) tanh(ua)),
rn(A) =ilng,(A). (2.16)

We have checked numerically that, for the ground state, the right-hand side of (2.14) is
indeed given by successive integers from MM [1,2]. The Bethe root§\;} can all be
chosen to be strictly positive. Then, defining, = —X;, we rewrite the last term in (2.15)
more symmetrically as follows:

N/2 N/2
=Y (a2 =) + g2+ 0] == D q20-— 1) + q2(h). (2.17)
k=1 k=—N/2

The root density (1) for the ground state is therefore given by

) = 1dh
PN =Nan
r 1
=2a1(\) — / d) ax(h —M)p(\) + N[al(k) +b1(A) + a2())

+ azq_—1(A) — biy2ip_ (A) + aza,—1(0) — big2ip, (V)] (2.18)
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where we have ignored corrections of higher order/ ivhen passing from a sum to an
integral, and we have introduced the notations

0) = 1 d 0 = m sin(nu)
) = MY T cosh2u)) — cosnu)’
1 d m sin(nu)
by(M) = ——rp(A) = —— . 2.19
) 27 dkr ) 7 cosh2uA) + cognu) ( )
The linear integral equation (2.18) fp(A) is readily solved by Fourier transforms,
1
p(A) =2s(A) + NR()»), (2.20)
where

[e¢]

1 —iwh 1 1
s(A) = — dwe
2

2 cosliw/2) -2 coshir)’

_ 1 i _iwa | SIN(v — 2)w/4) coshvw /4)
R() = 7 / doe { sinh((v — 1)w/2) cosHw/2)

sinh((v — 2)w/2)
2sinh((v — DHw/2) coshw/2)
sinh((v — |2a4 — 1)w/2)
2sinh((v — )w/2) coshw/2)
sinh((1+ 2ib4)w/2)
* 2SI — Dw/2)coshwy2) T _)}’ (2.21)

+sgn2a; — 1)

which we have obtained using the res#ilts

Gy () = Sg“”)SinZi(:r;;Z/')z?/Z)’ 0< |n| <2, (2.22)
A _ _Sinl‘(na)/Z)
bp(w) = 75“1“%0/2) , O<fNen<v, (2.23)

wherev = % > 1, and the sign function sgm) is defined as

sgrin) = {’6””" Zigf (2.24)

We have also made use of the fé&iL — 1| < 2v, which follows from (2.7).

2 Our conventions are

00
1

)= / 47Oy fO)= o / i f () do.

—00 —00
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Having determined the root density for the ground state up to ordsr, We now
proceed to compute the corresponding energy. Recalling the result (2.3) for the energy
in terms of the Bethe roots, we obtain

27rsin,uN/2
E=— p > a1+

j=1
7 sin N2
=- “[ > al(x,->—a1<0)]+-~-
HoLiZ2Ng2
T sinp |:N / drai(M)p () — al(O)] 4+, (2.25)
w

where again we ignore corrections that are higher order/id,land the ellipsis(- - )
denotes the terms in (2.3) which do not depend on the Bethe roots. Substituting the result
(2.20) for the root density, we arrive at the final result for the ground-state energy

E = Epulk + Eboundary (2.26)
where
. o0
2N sinu 1
Epuk=——"""— | drar(M)s(A) + EN cosu
—0o0
o0
= —Nsir? / dx 1 - L cos (2.27)
B H (cosh2ur) — cosu) coshrr) = 2 H '

—00

which is the well-known [28] result for the bulk (ordar) ground-state energy of the XXZ
chain; and the boundary (order 1) energy is given by

oo

f drai(W[R(O) — ()]

—0o0

7T Sinp

E boundary= —

1. 1
+ > sinp(cotua—_ + itanhub_ + cotuay +itanhub,) — > CoSu,

(2.28)

whereR(1) is given by (2.21). It should be understood that the boundary parameters obey
the constraints (2.8) witk = 1. In the limit of diagonal boundary terntg. — +o0, this
result for the boundary energy agrees with that of [3].

The result (2.28) for the boundary energy, which is the sum of contributions from both
boundaries, implies that the contribution of each boundary is given by
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£t _ sinu ]Od 1 sinh((v —2w/4) 1
boundary™ ~ "5, “ 2 costiw/2) { 2sinMvw/4) 2
sinh((v — |2a+ — 1))w/2) sinh(w/2) cogbiw)
+80M2ax = 1) 5 0 — D) 2) coshiw)2) sinh(ve/2) }
+ % sinp cotpas — %cosu. (2.29)

Indeed, as already noted, the total energy depends.aonly through the combination

lc_ — ¢4 |. Hence, the left and right boundary energies must be independent®dfet us

now consider the left—right symmetric boundary case, with=a_ andb; = —b_ (and

c+ are arbitrary, so thaiy = a_ is arbitrary). For this case, we expect that the energy
contributions of the left and right boundaries are eqm@wndawz Egoundar Dividing

(2.28) in half, we obtain the result (2.29). We now argue that this result holds for the
general (nonsymmetric) case. First, the form of the Hamiltonian (2.1) implies that the
functional dependence of the right boundary energy on the right boundary parameters
should be the same as the functional dependence of the left boundary energy on the
left boundary parameters; i.digroundaryz flay,by) and Ep ) gary= f(a—,b_) with

the same functionf. The boundary energy expressions (2.29) evidently satisfy this
property. Finally, the left and right boundary energies must be independent of each other.
Hence, having computeﬂgoundar}(a+,b+) for the left—right symmetric boundary case

for arbitrarya andb.., it cannot change if we change. and/orb_. (Although we do

not know the Bethe ansatz whén = —b_, one could in principle do the computations
numerically.) Thus, the expressi@g*oundan;a% b) must be correct even for the left—right

nonsymmetric case. SimilarI)Egoundar);a_, b_) must be correct even for the left—right
nonsymmetric case.

2.2. Casimir energy

The computation of the Casimir (ordefX) energy requires considerably more effort.
A systematic approach based on the Euler—Maclaurin formula [29] and Wiener—Hopf
integral equations [28] was developed in [30] for the periodic XXZ chain, and was extended
to the open XXZ chain with diagonal boundary terms in [3]. Fortunately, the analysis of
our system of Bethe ansatz equations (2.3), (2.4) is very similar to the one presented in
[3]- Hence, we shall indicate only the significant differences which occur with respect to
this reference, which we now denote by I. Using the fact ¢h&t) — sgnn)z — un for
A — 00, we find that the “sum rule” (13.30) becomes

/dk,o(k) = i[}(1—}-s +s54) — E(af 4+ay —ib_ —iby — 1)], (2.30)
N|[2 v
A

3 For example, consider the right boundary eneﬁ,@gundary If it does depend on,, then it must also depend
onc_, since the dependence must be of the farm— c |. But the right boundary energy can depend only on the
right boundary parameters. Hence, it cannot depend on the left boundary parametad therefore, it cannot
depend or .
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wheres+ = sgna+ — %); and the quantity (13.34) becomes

1 1
QZm[§(5_+s+)—;(a_~|—a+—ib_—ib+—l)i|, (231)

where, in our conventions; ; (0)2 = 2(v —1) /v. The Casimir energy (i.e., the contribution
of order I/ N to the ground-state energy) is given by

Ecasimir= —%, (2.32)
where [26,27] the central chargés given by (13.38}

c=1-127

6 v 2
—1- oD |:§(s_ +54)—(a- +ay —ib_ —iby — 1)] . (2.33)
Imposing the constraints (2.8) with= 1 gives the final result
. 2
c=l—m[§(s+s+):|:|c—c+|:| . (2.34)

Since the root density should be nonnegative, it follows from the sum rule (2.30) that
the boundary parameters should obey

1 1
§(1~|—s_ +s4)— —(a—+ay —ib_—iby —1)
1%
1 1
=§(1+S—+S+)3F;|C——C+I>0, (2.35)
i.e.,£lc- —cq| < v(L+s— +s4)/2, which is a further restriction of the constraint (2.13).

3. Thesine-Gordon model with two boundaries

We turn now to the sine-Gordon quantum field theory on the finite “spatial” interval
x € [x_, x], with Euclidean action

e r d d
ac [ fasronors [ oo (o) vn(ef) ]
dy ) |y—x_ dy )iy,
—o0 X— —o0

(3.1)

4 In the diagonal limit, the corresponding result is

6
viv—1
In particular, the central charge equals 1 for the ease-a— = 0 where the boundary fields are real and opposite

[31], as well as for the caser = v/2 of vanishing boundary fields. In [3], it is implicitly assumed that> 1/2,
in which cases+ = 1.

c=1-

v 2
[5“— +54) — (a— +a+>} :
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where the bulk action is given by

1
A9, 0u9) = 5(0u9)° + bk COI ), (3:2)
and the boundary action is given by
dy B + ny+de
B < )= —(p— +—=—". 3.3
:I:(‘P» dy) uiCOS(2(<p <po)> 5 (3.3)

This action is similar to the one considered by Ghoshal and Zamolodchikov [6], except
that now there are two boundaries instead of one, and the boundary action (3.3) contains
an additional term depending on the “time” derivative of the field. In the one-boundary
case, such a term can be eliminated by adding to the bulk action (3.2) a term proportional
to 9, dy¢, which has no effect on the classical equations of motion. However, in the two-
boundary case, one can eliminate in this way only one of thejtwarameters (say,
y+), which results in a shift of the othey( — y_ — y). Notice that this discussion is
completely parallel to the one for tle parameters of the open XXZ chain (2.1). Indeed,
we shall argue below that these two sets of parameters are related (3.21).

Let us consider the energy of the ground state of this model as a function of the
interval lengthR = x; — x_, for largeR. The leading (ordeR) contribution, which does
not depend on the boundary interactions, is well known [32]. The boundary (order 1)
correction is also known [11,12]. Our main objective here is to compute the Casimir
(order Y/ R) correction, and to derive a nonlinear integral equation [23-25] for the ground
state. We proceed, following the analysis [9] of the case of Dirichlet boundary conditions,
by considering the light-cone lattice [20-22] version of this model, defined on a lattice
with spacingA. This lattice model is formally quite similar to the XXZ chain considered
in the previous Section, the main difference being the introduction of an alternating
inhomogeneity parametetA. The continuum limit consists of takiny — oo, A — 0,
and A — oo, such that the lengti® and the soliton masa (whose relation tqupyik is
known [32]) are given by

R=NA, m= Ee*f”‘, (3.4)
A

respectively.

In this approachitis evidently necessary to know the relation between all the parameters
of the lattice model and those of the continuum quantum field theory (3.1)—(3.3). The
relation between the lattice and continuum bulk coupling constants is well known (see,
e.g., [7,10]):;82 = 8(x — u) = 8x (v — 1)/v, and therefore

8r 1

2 1=

A .
B v—1

(3.5)

5 It should be clear from the context whether the symbakfers to the value (3.5) of the bulk coupling
constant or to the rapidity variable, as in (3.6). Also, we note that in [10], the bulk coupling constamstricted
to the range G< u < ZZ and the Hamiltonian has a coefficientso that the “repulsive” and “attractive” regimes
correspond t@é = +1 ande = —1, respectively. Here we instead Jethave an increased range<Qu < =, and
consider a single sign of the Hamiltonian, corresponding taghelsive regime in [10]. Thus, here the repulsive
and attractive regimes correspond to the rangesi0< % and % < u < m, respectively. In terms of =7/,
these ranges ane> 2 and 1< v < 2, respectively.
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However, corresponding relations for theundary parameters have been known only for
the special case of Dirichlet boundary conditions [9].

We determine the general relation between the lattice and continuum boundary
parameters in Section 3.1 by matching the boundary energies in the lattice and continuum
models. We then formulate a nonlinear integral equation for the ground state, and give a
corresponding formula for the Casimir energy. We examine the ultraviglet 0) limit,
and also compare our result at the free-fermion paint (L) with that of the TBA approach
[15]. Moreover, we compute the Casimir energy numerically over a wide range of bulk and
boundary parameters, and track the crossover from the ultraviolet to the infrared regions.

3.1. Boundary energy and boundary parameters

For the light-cone lattice model, the Bethe ansatz equations can again be written in the
logarithmic form (2.14), except that the counting function is now given by

1
h(x) = P N[g1(x + A) +q1(0 — D] +q1(0) +r1(2)

+q2a_—1(A) — riy2in- (M) + g2, —1(A) —r12ip, (A)
N/2

= [a20- = 1) + g2 + 0] ¢ (3.6)
k=1

which depends on the inhomogeneity parameter
The computation of the ground-state root density to ordéN Iproceeds as in
Section 2.1, and we obtain

p(A):s()»—}-A)-}-s()»—A)-i-%R()»), (3.7)

wheres(A) andR(1) are given by (2.21). Moreover, following [9,22], the energy is given
by®

N/2

1
E = -3 jEZl[Cll()»j + A)+a1(rj — A)]
1 o0
=-2 {N f drar(A —)p() —ai(A) (3-8)

whereA is the lattice spacing. Substituting the result (3.7) for the root density, we obtain

E = Epulk + Eboundary (3.9)

6 We consider explicitly here only contributions to the energy which depend on the Bethe roots.
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where

Epulk = —% / drai(A—N)[s(t+ A) + 5 — A)]

—0o0

N T cog(wA) sin((v — Dw/2)

=24 ) 4 sinh(vw/2) coshw/2) (3.10)
and
1 o
Eboundary= A / drai(A — )\)[R()\) - 3()\)]
. 1 T cogwA)sinh((v — Dw/2) r ~
=~5 / dw snhvo)2) [R(a)) — 1]. (3.12)

Taking the continuum limitN=-— oo, A — 0, A — oo, keeping the lengthR and the
soliton massn fixed according to (3.4), we obtain (closing the integrals in the upper half
plane and keeping only the contribution from the poleat i)

Ebuk = %mZR cot(vrr/2) (3.12)
and
— 25 2
Epoundary= —% |:— cot(vr/4) — 1+ COS((VSin(v;/ag))N/ )
coshmby)
W +(+ < —)i|, (3.13)

wheress = sgnaz — 3).

The same result (3.12) for the bulk energy was obtained by a TBA analysis in [9]. Using
the relation (3.5) between the lattice and continuum bulk coupling constants, one arrives at
the well-known result [32] for the bulk energy of the continuum sine-Gordon model.

The result (3.13) for the boundary energy, which is the sum of contributions from both
boundaries, implies (see the corresponding discussion for the XXZ chain at the end of
Section 2.1) that the contribution of each boundary is given by

L 1 cos(v—2scap)m/2) | coshimby)
Fooundar/™ 2[ 2 T 3 T St sin(vn/2):|'
(3.14)

Comparing with Al. Zamolodchikov's result [11,12] for the energy of the continuum sine-
Gordon model with a single boundary

m 1 1 .
E(n,9) = S cosn /@) [—5 cogr/(21)) + > sin(rr/(21))

— ; + coqn/A) + cosf(z?/x)}, (3.15)
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and using again the bulk relation (3.5), we conclude that the boundary parameters of the
continuum modelif+, 9+) and of the lattice modek(, b-) are related as follows:

T)i=(1+)»—2)»ai)— (/\+1)< +l(¥i)

l?iZ)LJTbiz()\+l)ﬂi, (316)

where we have also made use of (2.6).

Note that the continuum boundary parameters. in Al. Zamolodchikov's result
(3.15) are those which appear in the Ghoshal-Zamolodchikov boudaarix [6]. Their
relation to the parameters., <p5t in the boundary action (3.3) is given by [11,12]

2
COS('B—(ﬁi-I-iﬁi)) e L
8

¢

2 .
cos(ﬂ—(ni - mg) = Bt +apey (3.17)
87'[ Me
where
2
I,LC — I’Lbulk (3.18)
sm(gn)

It follows from (3.16) that the relation between the boundary parameters of the lattice
model ¢+, B+) and the boundary parameters in the continuum actien (ogt) is given

by

sinh(a+ + B+) = —le 2:3‘»‘%,

C

sinl(a+ — B+) = e L (3.19)
He
For later convenience, we remark that for the left-right symmetric boundary case with
ay =a_ andby = —b_, these relations imply

_ 1 . .
0 =—9p = 2. (). == telsinhu(by +iay)|, (3.20)

where the functiom,, (1) is defined in (2.16).

We still have not discussed the relation between the lattice paranteteasd the
continuum parameterg.. We conjecture that these boundary parameters are related as
follows:

e =—AmcL =i(A+1)6+. (3.22)

We perform a check on this conjecture at the free-fermion gaint 1) in Section 3.2. The
constraints on the lattice parameters (2.8) with 1 then imply corresponding constraints

7 For simplicity, we assume in the remainder of this sectiondhat- 1/2, and therefores+ = 1.
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on the continuum parameters

N-+nt =Fly- —y4l+m,
9 40, =0, (3.22)

Finally, let us verify that the first relation in (3.16) is correct in the Dirichlet limit.
Indeed, in terms of the Ghoshal-Zamolodchikov boundary paraméterk.. ), which are
related to the parametefs., 9+) by [6]

1 1
cosy. coshdy = — 1 Cosk, coSns +cosif oL =1+ R (3.23)
+ +
the Dirichlet limit corresponds thy — 0, which impliest; = n4.. On the other hand, for
this case, the following relation between lattice and continuum parameters is known [7,10]:
£r = (= 2“i) = (14 * — 2ha+)%. This result is evidently consistent with (3.16).

3.2. Nonlinear integral equation and Casimir energy

We consider now the computation of the Casimir (ord&® lenergy. Rather than follow
the Euler—Maclaurin/Wiener—Hopf approach of Section 2.2, we use instead an approach
[23,24] based on a nonlinear integral equation for the ground-state counting function (3.6),
which is of interest in its own right.

The derivation of the nonlinear integral equation for the case at hand is similar to the
case of Dirichlet boundary conditions treated in [9]. Indeed, following the usual steps, we
obtain

%h(x) =N[s(h+A) +s( — A)]+RH)

dx o
_/2 G(h— /\+ze)—ln( e 2mih(=ie))

—00

/
+/j -G(.— N —le)—m( — 2rihG ) (3.24)
—00

wheree is a small positive quantitﬁ(w) = d2(w)/(1 + az(w)), ands(r) and R(1) are
given by (2.21). Moreover, the energy is given by

1 [ dx o
E = Epulk + Eboundary— A/Z s'(A — )»+l€)|n( th(k_le))
—0o0
17
+5 / ﬁs/(A—x—ie) In(1 — e ih0-+ie)), (3.25)
—00

where Epuik and Epoundaryare given by (3.10) and (3.11), respectively; and a prime on a
function denotes differentiation with respect to its argument. Integrating (3.24), taking the
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continuum limit as before (3.4), changing to the rescaled rapidity variakter A, and
setting f (0) = 2rih(0), we finally obtain the nonlinear integral equation

£(6) = 2imRSiNhG + i Pogry(6)

o0
2i o
+2 [ a0’ smGO —0' —ie)In(1— e @+, (3.26)
T
—00
where
1 [ inh(v — 2/2)
, sinh((v — 2)w
GO)=— [ dwe /" — , 3.27
©)=27 / @e 2sin(v — Lyw,2) coshw,2) (3.27)
—00
and Pyogry(#) is the odd function satisfying’t’)dry(e) = 2R(9). Moreover,
E = Epulk + Eboundary+ Ecasimir (3.28)

whereEpyik and Enoundaryare now given by (3.12) and (3.13), respectively; &simiris
given by

o
Ecasimir= _zﬁ / do Smsinh@ +ie) In(1— ¢/ €+, (3.29)
T
—00
Caux et al. [15] conjecture a nonlinear integral equation (144) which is similar to
our (3.26). While their equation assumes vanishing bulk mass and reflectionless points
of the bulk coupling constant, ours is valid for nonvanishing bulk mass and general values
of the bulk coupling constant, but for boundary parameters obeying the constraints (3.22).
We also emphasize that our equation is derived directly from the Bethe ansatz.

3.2.1. Ultraviolet limit
Let us now consider the ultraviolet limig — 0. Proceeding as in [9], we obtain
Ecasimir= —cm/(24R), where the central chargds given by

c=1_%(”_1>(g_n)2, (3.30)
T \%
and
0 = Ppdry(00)
=n{1+i[3(s++s)—(a+a+—ib—ib+—1)]}, (3.31)
v—1[2

wheresy = sgnat — %). We conclude that the value of the central charge for the sine-
Gordon model coincides with the result (2.33), (2.34) for the XXZ spin chain. In terms of
the sine-Gordon parameters (3.21), the central charge is given by

v—1)
T

2
c=1- [g(s++s-)¢( |J/+—V—|] : (3.32)

v(iv—1)
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3.2.2. Free-fermion point

A dramatic simplification occurs at the free-fermion pgiit= 4, which corresponds
(3.5) tor =1, orv = 2. Indeed, for this value of the bulk coupling constant, the kernel
G(9) (3.27) vanishes. It immediately follows from (3.26) th&®) is given by

f(0) =2imRsinhd + i Podry(0). (3.33)
Let us now rewrite the expression (3.29) for the Casimir energy as
oo
Ecasimir= —% / dosinhd{In(1— ¢/ OF9) —In(1— /9 }; (3.34)
—o0

and then change integration variabl&s= 6 — % + ie in the first integral, and’ =

0+ % — ie in the second integral. Assuming that the resulting contours can then be
deformed to the real axis, and dropping the primes, we obtain

o0

ECasimirZ—% / d@cosm{ln(l—eﬂ(’*%))+In(1—e*f(9*"7” ))
—00
o0
=—% / docostoIn(l—e/+2))(1— e~ /0=2)), (3.35)
—o0

Using (3.33), we obtain
oo
ECasimir= _zﬂ / d6 coshy In(1+ E1(0)e 2"RCOSV 1 pp(p)e—4mR oS~ (3.36)
T
0

where
E1(0) = —e Poay0+'3) _ =i Poary(0='3)
E2(0) = ol Podry(0+5) ,—i Poary(0—5) (3.37)
One can show using (2.21) and (3.16) thi&bsv@+%) is given (fora = 1) by
ol Poary(0+ %)
_sinh((0 +in4)/2) sinh((6 +in-)/2) sinh((6 —V1)/2) sinh(® —D-)/2)
~ cosh((8 — in4)/2) cosh(0 —in-)/2) cosh(6 + ¥4)/2) cosh(6 + D-)/2)’
(3.38)

ande~#av®=2) is given by the complex conjugate of the above expression.

This result can now be compared with the result obtained using the TBA approach of
Caux et al. [15]. One finds that the Casimir energy is again given by (3.36), with (see
Eq. (58) in [15])

E1(0) =tr(K_(0)K+()). E2(0) = de{ K_(0)K+(9)), (3.39)
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whereK 4 (0) are the crossed-channel bound&mnatrices [6]
. iky —iY+ o H :
——fe sinh sin(é+ —i0)
Ki(@)zri(z —9>< 2 \ 5 , ) (3.40)
2 —sin¢xL +i0)  —Fe7*sinhD

Note that we have included in the boundatymatrices their dependence on the (real)
parameters., corresponding to th%— terms in the boundary action (3.8)The scalar
factorsry (6) are given by

1
r+(0) = cossia(ni’_ie)g(mi’_ie)’ (3.41)
where [33]
Cosx
o(x,u)= ZcosT+ - hcoak —I -1 (3.42)

Using the relations (3.23) to expredss(9) in terms of the boundary parameters

n+, 9+, y+, we find that the results (3.37), (3.39) fan () and E2(0) agree when the
boundary parameters satisfy the constraints (3.22). This is a good check on our results
(3.26), (3.29) for the Casimir energy for general values of the bulk coupling constant, as
well as on the conjectured relation (3.21) between the boundary parametansly...

3.2.3. General valuesof R and v

For general values of the length and of the bulk coupling constamt the Casimir
energy cannot be computed analytically. Nevertheless, one can readily solve the nonlinear
integral equation (3.26) by iteration and compute the Casimir energy numerically through
(3.29)2 Sample results are summarized in Figs. 2-5, which show the dependence of
ceff = —24R Ecasimi/™ on the various parameters. Note that mR. In all cases, the
computed value o in the ultraviolet region- — 0 agrees with the analytical result
(3.30), (3.31). Also, as expectegy — 0 in the infrared regiom — oco. Moreover, one
can observe the crossoverdg from the ultraviolet to the infrared regions.

These graphs are parametrized in part by the boundary parametérs, in terms of
which the functionR () is defined (2.21). Nevertheless, it is straightforward to translate
to the sine-Gordon boundary parameters using (2.6), (3.19)—(3.21). Indeed, consider
Fig. 3, for whicha; = a_ andby = 0; and therefore (2.8)¢_ — ¢4 | = |2a4+ — 1|. This
corresponds t@gt =0andus = u— = ucSin(ray /v); and alsoly— — y4| = m|2ay —
1|/(v — 1). Hence, one can infer from this graph the dependenegqfobn ;1 = u_ or
Y= — Y+l keeping<p3E fixed. Similarly, for Fig. 44+ =a_ = 1.4 andby = —b_, which
impliesw(}L =—¢, = %qz,g(bg anduy = pu— = po|sinhu(by +i1.4)|. Hence, one can

8 The relation between they parameters in the boundagymatrix (3.40) and those in the boundary action
(3.3) is not a priori obvious. The fact that these parameters are the same (and, in particular, that the normalization

of the f]—“’ terms in the boundary action is correct) follows from the observation [6] that yshift y + y in

the boundarys matrix implies a corresponding shit, (¢, d £y By (g, d?) + ”V d‘/’ in the boundary action.

9 A useful trick [34] is to consider (3.26) with the shift— 0 + ie, and to work |n a range of (typically,
centered at ~ 0.3) for which the Casimir energy does not depend on the partieulatue.
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c_effvs.logr

_08 1 1 1 1 1 1 1
7 -6 -5 -4 -3 2 -1 0 1
logr
Fig. 2. ceff vs. logr, foray =a_ =1.4,15,1.6, withv =22 andby = —b_ =1.3.
c_effvs. a+
1
0.5 B
0 -
-0.5 B
-1+ 4
1.5 .
_2 1 1 1 1 1 1 1
1 11 1.2 1.3 14 1.5 1.6 1.7 1.8

a+

Fig. 3.ceff VS.ay =a_, for r =107°,0.1,0.3,1.0, 10, withv = 1.7 andb =b_ =0.
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c_effvs. b+

=
[
ol

-0.2 1 1 1 1 1

0 1 2 3 4 5 6
b+
Fig. 4.ceff VS. by = —b_, for r = 10720,104,0.01, 0.1,0.3, withv = 2.7 anday =a_ = 1.4.
c_effvs. log r

=
[}
0I

_0_8 1 1 1 1 1 1 1
-7 -6 -5 -4 -3 -2 -1 0 1

logr

Fig. 5.ceff vs. logr, forv=1.9,2.0,2.1, withay =1.7,a_ =15,by = —-b_ =0.5.
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infer from this graph the dependencegf onuy = u— or<p5r = —¢, , keepingy_ —y4|
fixed.

Finally, we remark that the convergence of the iterative procedure which we use to
numerically solve (3.26) depends sensitively on the values of the various parameters.
Owing to the great number of parameters, we have not attempted to find the entire domain
of convergence.

4. Discussion

We have exploited the recently-proposed [16—18] Bethe ansatz solution of the open
XXZ chain with nondiagonal boundary terms to compute finite size effects in both the
XXZ and sine-Gordon models, in a range of parameter space previously not possible.
Although we have focused here exclusively on properties of the ground state, it should
be possible, and quite interesting, to generalize this work to excited states, with bulk
and/or boundary excitations. Such a study has recently been made for the case of Dirichlet
boundary conditions [35]. It would also be interesting to introduce a “twist” in the
nonlinear integral equation to stugys perturbed minimal models with boundaries, and to
consider applications of our results to condensed-matter systems.

It would be desirable to investigate these models for the full range of boundary
parameters, unhampered by the constraint (2.2). Indeed, this constraint precludes an
investigation of the Casimir energy of the sine-Gordon model in the massless scaling
limit as a function ofy = %(goaf — @), Which is of interest in certain condensed-matter
applications [13-15]. However, finding a Bethe ansatz solution for this most general case
remains a challenging open problem.
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