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We solve the SU(N)-invariant Yang-Baxter equations imposing only the unitarity condition. The usualS
matrices should satisfy the crossing symmetry which originates from theCPT invariance of relativistic
quantum-field theory. In this paper, we consider nonrelativistic SU(N)-invariant factorizableS matrices by
relaxing the crossing symmetry and making the amplitudes for creating and annihilating new particles vanish
and find that theseSmatrices are exactly the same as those of the multicomponent Calogero-Sutherland model,
the quantum-mechanical model with the hyperbolic potential between particles and antiparticles. This particu-
lar solution is of interest since it cannot be obtained as a nonrelativistic limit of any known relativistic solutions
of the SU(N)-invariant Yang-Baxter equations.@S1050-2947~96!06011-8#

PACS number~s!: 03.65.Nk, 11.55.Ds

Integrability plays an important role in understanding
nonperturbative aspects of various models ranging from the
field theoretical and statistical models to nonrelativistic
quantum-mechanical many-body systems. If the number of
conserved charges are equal to the degrees of freedom, the
number of particles and their momenta are preserved and
multiparticle interaction can be factorized into products of
two-body interactions. A consistency condition for this fac-
torization is the Yang-Baxter equation~YBE!.

The YBE can determine theS matrices of the integrable
quantum-field theories and the Boltzmann weights of equi-
librium statistical mechanics models in two dimensions. To
fix theSmatrices completely, one should impose the unitar-
ity and the crossing symmetry along with the particle spec-
trum. The unitarity is the conservation law of the probability
while the crossing symmetry arises from theCPT symmetry
of the relativistic quantum-field theories.

In this paper, we find scattering amplitudes of a quantum-
field theory and a nonrelativistic quantum mechanics and
relate these solutions. TheS matrices of the quantum-field
theory are derived by solving the SU(N)-invariant YBE and

imposing only the unitarity condition while reserving the
crossing symmetry. Then we analyze these solutions in the
following manner. To get the nonrelativistic quantum-
mechanical limit, we let the rapidities be small and the am-
plitudes for the creation and the annihilation processes of the
particles and antiparticles vanish. In this way, we can find a
complete class of solutions which include the relativisticS
matrices as a subset along with genuinely nonrelativistic so-
lutions.

Our main result is that one of the genuinely nonrelativistic
solutions of the SU(N)-invariant YBE is identical to scatter-
ing amplitudes of the multicomponent Calogero-Sutherland
model~CSM! @1,2#. It is remarkable that this correspondence
cannot be obtained by taking a merely nonrelativistic limit of
the relativistic~CPT-invariant! solutions.

Recently, there has been a great interest in the CSM, a
nonrelativistic quantum-mechanicaln-body system with
long-ranged two-body potentials. The CSM is closely related
to the integrable spin chains with long-ranged interactions
@3,4#, random matrix theory@5#, and fractional statistics@6#.
Furthermore, this model is also connected with a field theory.
The scattering amplitudes of the CSM can be derived by
simply taking a nonrelativistic limit of the sine-Gordon soli-
ton S matrix @7,8#.1 In this paper we generalize this corre-
spondence to the multicomponent CSM, then-body
quantum-mechanical system of colored particles and antipar-
ticles interacting via integrable long-ranged potential of hy-
perbolic type and nonrelativistic factorizableS-matrix theory
with SU(N) invariance. However, our result is different from
that of the sine Gordon in the sense that theSmatrix of the
CSM is not derived from the nonrelativistic limit of the rela-
tivistic scattering theory solved completely in@10#.

We start with the SU(N)-invariant YBE and the unitarity
condition. This can be represented pictorially as in Fig. 1.
u’s denote the scattering amplitudes between particles~or

1This connection was also observed for the boundary sine-Gordon
equation in its relation toBCn type CSM@9#.

FIG. 1. Scattering amplitudes of particles and antiparticles with
colors.
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antiparticles!, r ’s the reflected one, andt ’s the transmitted
one between the particle and the antiparticle.

The YBE and the unitarity condition consist of 15 equa-
tions for these amplitudes, and seven of them include neither
r 2 nor t2. Note thatr 2 and t2 represent the amplitudes of
pair-creation and pair-annihilation processes. The seven
equations are the following:

u1~u!u1~2u!1u2~u!u2~2u!51, ~1!

u1~u!u2~2u!1u2~u!u1~2u!50,

t1~u!t1~2u!1r 1~u!r 1~2u!51,

t1~u!r 1~2u!1r 1~u!t1~2u!50,

u1~u!t1~u1u8!r 1~u8!5t1~u!u1~u1u8!r 1~u8!,

u2~u!t1~u1u8!r 1~u8!5r 1~u!r 1~u1u8!t1~u8!

1t1~u!u2~u1u8!r 1~u8!,

u2~u!u1~u1u8!u2~u8!5u1~u!u2~u1u8!u2~u8!

1u2~u!u2~u1u8!u1~u8!,

whereu is the spectral parameter. The ‘‘minimal’’ solution
of these equations is

u1~u!5t1~u!5
2u

g1u

G~u!G~g2u!

G~2u!G~g1u!
,

u2~u!5r 1~u!5
g

g1u

G~u!G~g2u!

G~2u!G~g1u!
, ~2!

whereg is the arbitrary parameter. Plugging this minimal
solution into the rest of the equations, we obtain all possible
solutions ofr 2 and t2. Among these, those withr 25t250
are particularly interesting since they can be related to the
nonrelativistic quantum-mechanical systems. Indeed, replac-
ing u with ik and interpreting the parameterg as the coeffi-
cient of the hyperbolic interactionl in CSM, we will show
that these scattering amplitudes are identical to those of the
multicomponent CSM.

We list the complete solutions of SU(N)-invariant YBE
without the crossing symmetry in Table I.U(u) satisfy
U(u)U(2u)51 due to the unitarity and similarly for
R(u), andT(u). It is easy to show that the classes I–VI are
exactly the nonrelativistic limits of the relativistic solutions
by Berg et al. @10#, i.e., imposing the crossing symmetry
of u1(u)5t1( ip2u), u2(u)5t2( ip2u), and r 1(u)
5r 2( ip2u), which fixes the parameterg to a certain value
for each classes. Class I describes a system without reflec-
tion, pair creantion, and pair annihilation. Thus it is a good
candidate for a nonrelativistic quantum-mechanical system.
g is fixed to zero with the crossing symmety. Class II does
not have reflecting amplitudes andg522p i /N with the
crossing relation. It is related to theCPN21 model SU(N)
chiral Gross-Neveu model. Class III includes theO(2N)
(N.1) symmetric scattering matrices obtained by Zamolod-
chikov and Zamolodchikov@8#. The crossing symmetry fixes
g to ip/(12N). Class IV has a similar structure to class III
with g52 ip/(11N) in the relativistic limit. Classes V and
VI are the other nontrivial solutions with a crossing relation.
Classes IX and X do not allow any nontrivial solutions with
a crossing relation. No models are associated with these
classes yet.

Classes VII and VIII are the most interesting since they
have vanishingr 2 and t2. Since these two classes are identi-

TABLE I. Complete solutions of nonrelativistic SU(N) invariant Yang-Baxter equations.

Class u1(u) u2(u) r 1(u) r 2(u) t1(u) t2(u)

I u

g6u
U(u)

g

u
u1(u)

0 0 T(u) 0

II u

g6u
U(u)

g

u
u1(u)

0 0 T(u)
2

g

gN

2
1u

t1(u)

III t1(u) r 1(u) g

u
t1(u)

g

g(12N)2u
t1(u)

u

g1u
U(u) r 2(u)

IV 2t1(u) r 1(u)
2

g

u
t1(u)

g

2g(11N)2u
t1(u)

u

g2u
U(u)

r 2(u)

V 0 r 1(u) R(u) r 1(u) 0 r 1(u)

VI 0 egur 1(u) R(u)
2
N(e2gu21)
N2e2gu21

r 1(u)
0 N21e2gur 2(u)

VII t1(u) r 1(u)
2

g

u
t1(u)

0 2u

g1u
U(u)

0

VIII u

g6u
U(u)

g

u
u1(u)

R(u) 0 0 0

IX 0 U(u) R(u) 0 0
gFU~u!2U~2u!

R~u!

R~2u!G
X 0 U(u) r 1(u) 0

gFU~u!2U~2u!
r1~u!

r1~2u!G 0 or 2
N

2
t1(u)
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cal under the interchange oft1 with r 1, we will concentrate
on Class VII only and will discuss how it can be related to
the multicomponent CSM.

We begin with the multicomponent CSM where the
Hamiltonian is given by

H52(
i

n
]2

]xi
2 1(

i, j

l~l1Pi j !

sinh2~xi2xj !
, ~3!

where Pi j denotes the exchange operator of the colors of
~anti-!particles atxi and xj . This model has been shown
to be integrable by several authors@11,12#. Since Pi j

2

5I , we can define the eigenstates ofPi j as u6&
5(1/A2)(us is j&6us js i&) such thatPi j u6&56u6&.

To obtain the two-bodySmatrix, we consider the scatter-
ing eigenstates of the Schro¨dinger equation
@2(d2/dx2)1$l(l11)/sinh2x%#ck(x)5k2ck(x). Due to the
underlying SU(1,1) structure of the scattering problem@13#,
ck(x) is proportional to (sinhx)l11

2F1@(l111ik)/
2,(l112 ik)/2,l13/2;2sinh2x], where 2F1 is the hyper-
geometric function. The asymptotic states forx→` are

ck~x!→CS eikx G~ ik !G~2l12!

G~l111 ik !G~l11!

1e2 ikx
G~2 ik !G~2l12!

G~l112 ik !G~l11! D ~4!

and the two-body scattering matrices are

S1~k!5
G~ ik !G~11l2 ik !

G~2 ik !G~11l1 ik !
,

S2~k!5
G~ ik !G~l2 ik !

G~2 ik !G~l1 ik !
, ~5!

for Pi j561, respectively@14,15#.
Now returning to the us is j& basis, one can obtain

particle-particle scattering amplitudes straightforwardly as
follows:

Ss is j

s js i[u15
1
2 ~S11S2!, Ss is j

s is j[u25
1
2 ~S12S2!, ~6!

for s iÞs j . Note thatSs is i

s is i5u11u2 if s i5s j . Similarly,

the scattering amplitudes of particles and antiparticles where
s iÞs̄ j become

S
s i s̄ j

s i s̄ j[r 15
1
2 ~S11S2!, S

s i s̄ j

s̄ js i[t15
1
2 ~S12S2!, ~7!

wheres̄ j stands for the color of an antiparticle.~See Fig. 1
for schematic definitions of the amplitudes.!

The scattering amplitudes of the same color have to be
dealt with some care. The most general eigenstates ofPi j are
now of the form u6&5(1/A2)(uA&6uB&), where uA&
5N( i51

N ai us i s̄ i& anduB&5N( i51
N ai us̄ is i& for some coeffi-

cientsai ’s andN5(( i51
N ai

2)21/2. The scattering amplitudes
S6 in the basis ofu6& can be related to those in the basis of
us i s̄ i& as follows:

1
2 ~S11S2!5r 11Mr 2 ,

1
2 ~S12S2!5t11Mt2 , ~8!

whereM5N2( i , j
N aiaj . Comparing Eq.~5! with ~6!, we find

r 25t250. With S6 given in Eq.~3!, the scattering ampli-
tudes of the SU(N)-invariant CSM yield

u15t15
2 ik

l1 ik

G~ ik !G~l2 ik !

G~2 ik !G~l1 ik !
,

u25r 15
l

l1 ik

G~ ik !G~l2 ik !

G~2 ik !G~l1 ik !
,

r 25t250. ~9!

Indeed these amplitudes belong to class VII of the YBE.
In this paper, we used the YBE with the unitarity as a

unified tool to derive theSmatrices of nonrelativistic many-
particle systems as well as those of relativistic field theories.
Additional constraints select out the corresponding solutions.
For the relativistic cases, the crossing symmetry is required
due to the CPT invariance. For the nonrelativistic cases, on
the other hand, a natural assumption of the vanishing ampli-
tudes of creation and annihilation is necessary. An interest-
ing result is that we derived theSmatrices of the multicom-
ponent CSM where the potentials between two particles are
all 1/sinh2x types irrespective of the species from the
SU(N)-invariant YBE. We want to point out that there exists
a more general exactly solvable potential~Pöschl-Teller!
@13# which contains both 1/sinh2x and 1/cosh2x @16#. It has
been also known that theO(2)-invariant scattering theory
~the sine-Gordon model! is related to the nonrelativistic
Hamiltonian system with the 1/sinh2x potential for
~anti-!particle-~anti-!particle scattering@8# and the 1/cosh2x
for particle-antiparticle@7#. It would be interesting to con-
sider the case where particle-antiparticle scattering potential
is different from particle-particle potential with particles car-
rying colors. We would like to emphasize the approach to the
multicomponent CSM and the generalized Haldane-Shastry
model@3,4,17# based on the factorizableS-matrix theory can
be promising. We hope our approach can be generalized to
other integrable Hamiltonian systems.
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