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Giant magnonlike solution in Schs x S°
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In this paper we derive a giant magnonlike solution for a string theory in a Schrodinger spacetime
Schs x S which is holographic dual to a dipole-deformed super-Yang-Mills theory. This classical string
state is pointlike in Schs but stringy in a S? subspace of S>. We find the string solution and the energy-
charge relation exactly for an infinite angular momentum as well as for a finite one which shows an explicit

finite-size correction.
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I. INTRODUCTION

Integrability is a key feature in the AdS/CFT duality. It
plays an important role in finding exact solutions of both
string theories in the anti—de Sitter (AdS) space and gauge
theories on their boundaries. It is powerful enough to
determine the complete spectrum nonperturbatively for
certain well-known cases. Efforts have been made to find
new dualities which have more general applicability. Some
of these maintain the integrability, and hence, potential to
find exact solutions. In these cases, various classical string
solutions and their energy spectrum allow for quantitative
understanding of the duality in the strong coupling regime.

Dipole deformations of N = 4 super-Yang-Mills theory
are interesting developments in this direction. With min-
imal nonlocality, imposed by a null dipole deformation in
the light-cone direction, the resulting theory maintains a
nonrelativistic conformal symmetry in three-dimensional
perpendicular directions [1-4]. Furthermore, a dual super-
gravity background has been worked out and identified
with the “Schrodinger” spacetime geometry.

An interesting issue is if this duality can be established in
the context of the integrability. One can think of the dipole
deformations as the integrable Yang-Baxter deformations of
AdSs x S§° string [5] as shown in Refs. [6,7]. A unified point
of view on these integrability structures has been provided in
Ref. [8]. More recently, this issue was addressed again in
Ref. [9] from the view point of the Drinfeld twist [10,11]
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in the same way as other *-product deformations [12].
Considering a specific dipole deformation with the
Schs x S target space, the authors have obtained semi-
classical solutions such as spinning Berenstein-Maldacena-
Nastase (BMN)-like strings [9] (see also Ref. [13]).

In this paper, we focus on a giant magnon in Schs x S
space. The original giant magnon is constructed in a R x S?
subspace of AdSs x S and is mapped to a classical sine-
Gordon soliton solution [14]. The energy and other con-
served charges give strong support for the conjectured
all-loop spin chain. This solution also exists in several
deformed AdS/CFT dualities and provides quantitative
understandings in the strong coupling limit [15]. We look
for a giant magnonlike solution in Schs x S3 along with the
energy-charge relation, which reduces to the original one
when the deformation is turned off. Also, in the super-
gravity limit, our solution reproduces the supersymmetric
BMN:-like solution. Furthermore, we have also computed
the finite-size correction to the energy spectrum derived
from the exact classical string solution with a finite angular
momentum. We hope these results can be useful to clarify
the AdS/CFT duality of the dipole-deformed theory.

This paper is organized as follows. In Sec. II we introduce
the metric of the “Schrodinger” spacetime and impose
conformal gauge in the Polyakov string action along with
Virasoro constraints. In Sec. III we obtain the giant magnon-
like solution and corresponding energy-charge relation when
the angular momentum in S is infinite. More general results
of the solution for the case of a finite angular momentum are
derived in Sec. IV where an explicit finite-size correction
is presented. We conclude the paper in Sec. V with some
comments and future research directions.

II. THE STRING LAGRANGIAN AND
VIRASORO CONSTRAINTS

According to Ref. [9], the metric on Schs x S° in global
coordinates can be written as
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ds’ (W, 2d1dV —X2dr + dX’ + dZ?
=1+ )ar+

r 72
+ (dy + P)* + dsgp, (2.1)
where
1

ds?., = do; + 1 sin?6), [cos?0; (d¢p, + cos O,dp,)?

+d62 + sin20,d g, (2.2)
1

P= Esinzél (dgpy + cos O,dgps), (2.3)

and the metric on S” is given as a U(1) Hopf fibre over CP?
[13]. The parameter u deforms the usual AdS space. The B
field is given by
U

adB=1" ?dt A (dy + P). (2.4)
We set the AdS radius / and the inverse string tension o' to
I =1, =1 which fixes the string tension to 7 = 1/(2x)
from now on.

We focus on a S? subspace of S° by choosing

(2.5)

which lead to

1
P=0; dsg.p, — ds* = do} + Zsin291d¢%. (2.6)
We further restrict the string solutions in a subspace of
Schs by setting X =0,Z =Z,. The background then

simplifies to
dS2 = gMNdXMdXN

2 2
—_ <1 + %) AP+ dtdV + dy? + d6° -+ sin’0dgp’,
0 0

H
B = bMNdXMdXN = Z—%dt VAN dl//,

(2.7)

with the new definition of the angular coordinates
0=0,, p=¢,/2.

In our consideration we will use a conformal gauge in the
Polyakov string action, in which the string Lagrangian has
the form

T
L= ) (Goo — G11 +2Byy) (2.8)
along with the Virasoro constraints
Goo + G =0, (2.9)

GOl - 0, (210)

where the induced metric and the B fields are given by

Gmn = gMNamXMaan’ an = bMNamXManXN7

m,n=0,1; M,N=0,1,...,9,

where the derivatives are with respect to world-sheet
coordinates 7° = 7,n' = 6.

We consider the following string embedding for the
coordinates in Eq. (2.7):

V = u’mr,
¢ = ot + f(£).

! = K7, Y = w7,

0=20(&), E=o0—vr. (2.11)
This choice implies that the string moves as a point particle
in the subspace of Schs while a stringlike motion appears
only in S?. We assume that the speed v of the string in S?
satisfies v < 1. In a particular limit where the string
collapses to a point even in S2, the configuration reduces
to the spinning BMN-like solution considered in Ref. [9] if
the constant coordinate Z; is fixed to

K
Z:ZOZ\/7
m

Inserting Eq. (2.11) into Eq. (2.8), one can reduce the
string Lagrangian to an effective one-dimensional one
(a prime is used for d/d¢&)

(2.12)

L= (1 =)0 + 2 = PP + [(1 4+ 0)f ~ o]

x [(1 =) f" + w]sin®0). (2.13)
Here we have introduced a deformation parameter /3
defined by

2 422
ﬁ2:w1+u m
=,

[0

(2.14)

which implies a relative speed of the string motion in Schs
with respect to that in S>. The equation of motion from
Eq. (2.13) gives a solution for /'

1 C
[ =1_—v2<m—vw>,

where the integration constant C is to be fixed shortly.

(2.15)

'Instead of the effective Lagrangian, the same result for f can
be obtained from the Virasoro constraints (2.9)—(2.10) based
on the full string Lagrangian and along with the embedding
coordinates (2.7).
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From Egs. (2.11) and (2.15), the Virasoro constraints
(2.9)—(2.10) can be written as

1 4Crw
02 — 2 _ o2
Tl L Fp
1+ 2 (C2esc? 262
( —l—v)(Ccsc?j—wsmH) ’ (2.16)
(1-v%)
Co = v(K* — f*?). (2.17)

The first Virasoro constraint (2.16) is equivalent to the first
integral of the equation of motion for € as shown in general
case [16]. The second constraint determines the integration
constant C. After inserting it into Eq. (2.16) one finds that
the nonisometric coordinate 0 satisfies a first-order ordinary
differential equation:

(K = pfPw? — w*sin®0) (w?’sin?0 — v (k* - fPo?))

9/2 —
(1 = v?)*w?sin’0

(2.18)

We will solve this equation in infinite and finite volumes in
the next two sections.

III. THE GIANT MAGNONLIKE SOLUTION
IN INFINITE VOLUME

A. Solution

The giant magnon was introduced in Ref. [14] as a string
image on S2, which is dual to the magnon excitation of the
spin chains arising from the gauge theory. The geometric
meaning of the momentum carried by the magnon is a
deficit angle of ¢ for the infinite-size string on the equator
0 = z/2 in S%. Therefore, we impose the following con-
dition on a giant magnonlike solution in infinite volume:

02 =0 foré?:g. (3.1)

For the case of the finite volume, this condition should be
relaxed as we will see in the next section.
Along with Eq. (2.18), this condition requires

(K2 = pPa? — 0*)(0? = 2 (k> = fP0?)) =0.  (3.2)
Among two solutions of this, we choose
= (1 +ﬁ2)a)2 (3.3)

because this choice is consistent with that of the unde-
formed giant magnon k =@ upon setting S =0
(w; = 0,4 = 0). The condition (3.3) also reproduces the
Virasoro constraint (x? = @? + u*m?) for the BMN-like

solution in the @ — 0 limit [9]. Along with Eq. (2.17), this
also fixes C = vw.
With this choice, Eqgs. (2.18) and (2.15) are simplified to

w?cos?0(sin’@ — v?)

6/2 —
(1 = v?)%sin%0

, V@ 1
= ———1]. 3.4
7 1 -2 <sin2€ ) (3:4)
The solution for @ is given by
cosA(&) = V1 - vzsech(%(f). (3.5)
—-v

Inserting this into Eq. (2.15), one can find the solution for
the isometric coordinate ¢ on S

v ®
(/ﬁ—wr—i—arccot{mcoth( 1—02§>} (3.6)

These are exactly the Hofman-Maldacena solution for the
infinite-size giant magnon [14]. The only difference is the
deformed parametric relation (3.3).

B. The energy-charge relation

The conserved charges associated with the isometric
coordinates ¢, V, y and ¢ are the string energy E, spin M
and two angular momenta J; and J, respectively. In the
infinite-volume limit L — oo, these conserved charges are
given by

L/2 oL,
E, = do——*
/L/2 03(301)

L/2
L/2 L2
M = / = Tm/ do = TmlL,
L/2 -L/2
L2 a[; L)2
J = / do = Ta)l/ do=TwL,
L/2 8(301.‘/) -L/)2
/L/2
B L/2
L/2 1 L2
=Tw {/ do — 4/ cosZHdo]
L2 (1= )i
=TlwL -2V 1 -1?. (3.7)

While each of these charges diverges, we consider a
combination which generates a finite quantity as follows:
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E,—\/p*M*+ 2 +J?

=TkL— \/(ﬂTmL)Z—F(Ta),L)Z—F (TLw)? [1 -
2 1—2?
:TL{K—\/IJrﬂza)erL}

S S (3.8)

Ny

where we used Eq. (3.3) at the last line. This particular
combination is chosen in such a way that it reduces to the
undeformed energy-charge relation when the deformation
is turned off and to the supersymmetric BMN-like solution
in the supergravity limit.

The deficit angle in the ¢ variable can be computed as

Ap = /_:f’(af)daf: arccos v — v = cos%qﬁ.

Lw

=7

(3.9)

In the undeformed AdS/CFT, the deficit angle A¢ is
identified with the momentum p of the excitations on the
world sheet or the magnon excitations of the corresponding
spin chain [14]. It is not clear whether this identification
(A¢ = p) is valid in this deformed case since the physical
excitations are yet unknown. Even so, we will still refer to
the deficit angle as “momentum” p whose real physical
meaning may be clarified in future works. Then, the
energy-momentum dispersion relation becomes

E —\/ﬂzMZ%—J%—F.’z:L
N /’—_"1+ﬂ2

This result shows how the deformation affects the
energy-momentum dispersion relation of the giant magnon-
like string state in Schs x S3. In the undeformed limit
|

. P
= 3.10
sm2’ (3.10)

v
p=wr+— ¢ +

Ao—Am
vwn[ am[ =

p =0 (w; =0, u = 0), this reduces to that of the ordinary
giant magnon. In the pointlike limit (p = 0, J = 0), this
relation reduces to that of the spinning BMN-like strings
considered in Ref. [9].

IV. THE GIANT MAGNONLIKE SOLUTION
IN FINITE VOLUME

A. Solution

One can solve Eq. (2.18) by relaxing the condition (3.1).
For this purpose, we introduce the new variables

2

¥ = cos’6), W:%—ﬁz, (4.1)
with which we can rewrite Eq. (2.18) as
- (42
where y,, and y, are given by
X, =1-0"W, Im=1-W. (4.3)

The solution of Eq. (4.2) is then given by

l—v

/ Vb = ()( Xm)

1- 1
= v —F(arcsin —4 1—@>, (4.4)
() \/)E )(m Xp

where F is the incomplete elliptic integral of the first kind.
Inserting Eq. (4.4) into Eq. (2.15), one can find the solution
for the isometric coordinate ¢ on S

1402 Xp

i , (4.5)

VI®E _} )(m:| dn [\/ﬁwé 1-— )m}

v°—1

where am, dn, sn are the JacobiAmplitude, JacobiDN, and
JacobiSN functions, respectively, and II is the complete
elliptic integral of the third kind.

B. The conserved quantities

Again, the conserved charges associated with the iso-
metric coordinates ¢, V, y and ¢ are the string energy E,,
spin M and two angular momenta J; and J as introduced in
Eq. (3.7). By changing the integration variable from d¢ to

P f m 2
()(p - ])\/)(p + ()(m —)(P)SII[_\/)Z:ZZ’ 1 _%}:|

|
dy/y' and the integration range from (—L/2,L/2) to
(Ym-xp) for the finite-volume L, we can express the
charges by

(=0 e

E, =27 " - K(1—e). (4.6)
B (1—2*)m .

M =2T o T K(1 —¢), (4.7)
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1— 2
PRV Gl L R (4.8)
O\Xp
J =2T/y,[K(1-¢€) —E(1-¢)], (4.9)
where we have introduced the useful parameter
)(m
==, 4.10
2 (4.10)

and K, E are the complete elliptic integrals of the first
and the second kinds. These charges diverge in the large-
volume limit since K(1 — €) — oo as ¢ — 0 from Egs. (4.1)

|

e ™
27 —es

l—e

Es /2M2+J2+J2

(e

and (4.3). But the combination in Eq. (3.8) should remain
finite. The deficit angle A¢ can be similarly obtained as

20 [1
Aqﬁzv[zH( p
Vp LY =2

(1-e), l—e) —K(l—e)].

(4.11)

C. The energy-charge relation

From the explicit expressions for the charges, the energy
dispersion relation of the giant magnon given in Eq. (3.10)
can be expressed by

Iliill :‘ZDH (4.12)

So far, all results are exact. For any J and Ap, one can solve Egs. (4.9) and (4.11) to get ), x,, (or v, W) which can be

inserted into Eq. (4.12) to find the energy-charge relation.

For explicit analytic expressions, we consider a large but finite angular momentum. From Eq. (4.9), J > T means ¢ < 1.
Therefore, Eq. (4.12) can be first expanded in the very small ratio E/K as

ES—\/,uzM2+J%+JZz2T

l—v
l—v

Now we assume that the parameters are expanded for a
small € as follows:

v =1+ (v; + v, loge)e, (4.14)

W =Wy + (W, + W, loge)e. (4.15)

By identifying A¢ = p in Eq. (4.11) and using Eq. (4.3)
along with Eq. (4.10), one can find the coefficients as

— cos? —1_10g16c0 psm2p
Yo =08y =Ty PR
1
vy = Zcosgsng (4.16)
Wo=1, W, = —sm2§, W,=0. (4.17)

The coefficient in front of K(1 — €) in Eq. (4.13) is as small
as O(e) so that the logarithmic-divergent term disappears.

With these coefficients and e expansions of the elliptic
functions, we find

Ve (4

1—2W L2 )2
v > K(1 —e)+%E(1 —e) .
ﬂ2 (l 02W>2
(4.13)
[
E,—\/W*M?> +J3 +J?
_ 2Tsin§ [ _sin® £+ (1 — Scos® §) - 0(62)}
= 5 .
Vit P A0+
(4.18)
The e expansion of J in Eq. (4.9) is
JxTsin? (- log (4.19)
2 16

from which the parameter ¢ can be expressed for J > T as

J
),
Ts1n5

Combining these together, we obtain the leading finite-size
correction of the energy-charge relation

€ = 16exp (— (4.20)
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E, —\/W*M* + J} + J?

_ 2Tsing [1 _ sin” £ + %(1 — 5cos* ) e—T(,,—2

—_— = smi
V142 14 p

(4.21)

The first term on the rhs is the energy dispersion relation
in infinite volume which we have obtained in Eq. (3.10).
The second term is the finite-size correction to the energy
and is our main result in this paper. The coefficient in front
of the exponential factor and its dependence on the
deformation parameter f defined in Eq. (2.14) may contain
important information on the interaction between the giant
magnon states. The exponent in the finite-size part is
independent of f, since it comes from the small-¢ expan-
sion of the angular momentum J as shown in Eq. (4.20). It
originates from our choice of the S? subspace in Eq. (2.5)
where the isometric angle ¢ couples with the nonisometric
6 independently of fS.

For the undeformed case of # — 0, this result reduces to

L2
E,—J=2T sin% |- 4sin2§e e (422)

which was obtained previously in Refs. [17-19].

V. CONCLUDING REMARKS

In this paper, we have found a classical giant magnonlike
solution moving in the Schs x S° target space. We have
considered the string configuration similar to the ordinary
giant magnons, namely, pointlike in the Schs space and
stringlike in the S? subspace of the S°. The conserved
charges and the corresponding energy-charge relations are
expressed in terms of the elliptic integrals in the finite
volume. We have confirmed that these results are consistent
with previously known results in the pointlike and

undeformed limits. In the same way as the giant magnon
dual to a magnonic excitation of the su(2) spin-chain
operators of the N = 4 super-Yang-Mills (SYM) theory, we
conjectured that this giant magnonlike string state is
holographically dual to a similar magnon state in a
composite spin chain operator of the dipole-deformed
N =4 SYM theory considered in Ref. [9].

A possible generalization is to consider a dyonic giant
magnon solution in Schs x S°. This solution can live in $°
where additional angular momentum should be introduced.
Another direction is to deform S° in addition to the dipole
deformation of Schs. For this purpose, one needs to find
string solutions for the integrable systems with two or more
deformations. Our eventual goal is to utilize our results to
identify the excitation spectrum on the string world sheet
and the corresponding spin chain with the momentum
related to the deficit angle. We hope to report on these in the
near future.
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Note added—After the first version of this paper was
posted to the arXiv, a new paper appeared where classical
string solutions were derived [20]. The main difference
from ours is that it considered string-like solutions even in
the Schs space.
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