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1. Introduction

Investigations on AdS/CFT duality [1] for theories with reduced or without supersymmetry are important not only conceptually, but
also for describing realistic physics. An example of such correspondence between gauge and string theory models with reduced super-
symmetry is provided by an exactly marginal deformation of A" = 4 super Yang-Mills theory [2] and string theory on a B-deformed
AdSs x S° background suggested in [3]. When g = y is real, the deformed background can be obtained from AdSs x S° by the so-called
TsT transformation. It includes T-duality on one angle variable, a shift of another isometry variable, then a second T-duality on the first
angle [3,4].

Another interesting example is the duality between the y-deformed AdSs x CP?, type IIA string theory and one parameter deformation
of the ABJM theory [5], i.e. A" = 6 super Chern-Simons-matter theory in three dimensions. The resulting theory has A/ = 2 supersymmetry
and the modified superpotential is [6]

Wy ocTr(e Y/ A1B1A2By — e™7/2 A1 By A2 B1). (1.1)

Here the chiral superfields A;, B; (i =1, 2) represent the matter part of the theory. As in the N = 4 super Yang-Mills case, the marginality
of the deformation translates into the fact that AdS, part of the background is untouched. Taking into account that CP? has three isometric
coordinates, one can consider a chain of three TsT transformations. The result is a regular three-parameter deformation of AdS4 x CP? string
background, dual to a non-supersymmetric deformation of ABJM theory, which reduces to the supersymmetric one by putting 1 =y> =0
and y3 =y [6].

The dispersion relation for the giant magnon [7] in the y-deformed AdSs x CP?, background, carrying two nonzero angular momenta,
has been found in [8]. Here we are interested in obtaining the finite-size correction to it. To this end, in Section 2 we introduce the y-
deformed background, consider strings on the R; x RP; subspace of AdS4 x CP)3/, and find the exact expressions for the conserved charges
and the angular differences. In Section 3 we perform the necessary expansions, and derive the leading corrections to the dispersion
relations of giant magnons with one and two angular momenta. In Section 4 we conclude with some remarks.

2. Exact results

Let us first write down the deformed background. It is given by [6]?

1
2 2 2 2
dsj, =R ( dspgs, + dscpi)’
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1 1 2
dséﬁ =dy? + Gsin® ¢ cos® ¥ (5 cos 6 dpy — 5 €S 0 depy + d¢3>
Y

1 1
+3 cos® y (dOF + G sin® 0, d¢?) + 2 sin? y (d6Z + G sin® 6, d¢?)

+yG sin® ¥ cos* v sin? 6y sin? 6, d¢§,

By = —R?>pGsin® ¢ cos®

1 1
X [5 cos? v sin® 61 cos 6, dos Adoq + 3 sin? v sin® 6, cos 6; dos Adepo

+ %(sin2 61 sin? 6y + cos? v sin? 61 cos? 6y + sin? v sin? 6> cos> 01) dor A dd)z},
where
G =1+ 7?sin® ¢ cos® y (sin® 6 sin® 6, + cos? ¥ sin? 0; cos? 6, + sin? ¢ sin? 6, cos? 1.
The deformation parameter y above is given by y = RTZy, where y appears in the dual field theory superpotential (1.1).

2.1. String solutions

In our considerations we will use conformal gauge, in which the string Lagrangian and Virasoro constraints have the form

T
ﬁsZE(Goo—Gn +2Bo1), (2.1)
Goo + G11 =0, Go1 =0. (2.2)

Here
Gmn = EMNIm XM, XN, Bpn =bundm XMa XV,

dm=0/0", mn=(0,1), (%&")=(r,0), M,N=(0,1,...,9),

are the fields induced on the string worldsheet.
Further on, we restrict our attention to the Ry x RP?, subspace of AdS4 x CP3, where 6; =6, =7 /2, ¢3 =0, and

1 G G
ds? = R? <_4_1 dt? +dy? + " cos® Y dp? + 2 sin? wdqﬁ%),

R2
By = by, g, dp1 A depy = —Z)?G sin® ¥ cos® ¥ depy A depy,

G ' =1+ p?%sin? y cos® y.
To find the string solutions we are interested in, we use the ansatz (j =1, 2)
t(r,o)=kt, Y(r.0)=v%¢), ¢j(T,0)=w;T+ fj),
§=w00+pT, K,wj, a,p =constants. (2.3)

Then the string Lagrangian (2.1) becomes (prime is used for d/d§)

TR 5 o[, 2, G / Boi \* G 2 ) Bwr \°
Csz—T(a -B )[w + 4 cos w(f1 e —;62> + 7 sin w(fz b _ﬂ2>
Ga? 2 .2 2 cin2 ayG . , ,  w1f)—waf]
Ty (wf cos® ¥ + w3 sin® ¥) + —5sin ¥ cos WW} (2.4)
while the constraints (2.2) acquire the form
G 2Bw1 w? G . 2Bws w5 K?/4
’2 2 ’2 4 1 2 /2 /4 2
— cos — sin = ,
v+ w(1 +a2+ﬁ2f1+a2+ﬁ2)+4 w<f2 +a2+52f2+a2+,32 S
G w G . w
v+ ZCOSZ w(f{z + #f{) + sin? w(fz/z + ffé) =0. (2.5)

The equations of motion for f;(¢) following from (2.4) can be integrated once to give
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1 Cq
e |:cos2 " + Bw1 + Y (awy + yCq)sin 1//} (2.6)

1 C ~
f,= a2 — g2 [szw + Bwy — 7 (awy — P Cy) cos? w},

where C; are constants. Replacing (2.6) into (2.5), one can rewrite the Virasoro constraints as

1 C - - .
Y2 = 20?2 |:(oz2 + B — —— — —— — (o — 7C2)? cos® ¥ — (aw; + 7C1)? sin® 1/fi|, (2.7)

®1C1 + w2Cy + B2 =0. (2.8)

Let us point out that (2.7) is the first integral of the equation of motion for . Integrating (2.6) and (2.7), one can find string solutions
with very different properties. All of them are related to solutions of the complex sine-Gordon integrable model in an explicit way [10].
Particular examples are (dyonic) giant magnons and single-spike strings.

2.2. Conserved quantities and angular differences

In the case at hand, the background metric does not depend on t and ¢;. The corresponding conserved quantities are the string energy
E; and two angular momenta Jj, given by

ALs o ILs
b= _/da 3(dot)’ Ji= /do 3300 (2.9)

On the ansatz (2.3), E; and J; defined above take the form

TR2 /g

TR?
h=—%C ﬁzfds |:§C1+(ota)1 —?Cz)coszw:|,
TR?> 1
== "y /ds [ga + (@ +)7C1)sin2¢], 210)

Let us remind that the relation between the string tension T and the 't Hooft coupling constant A for the A/ =6 super Chern-Simons-
matter theory is given by

R% = 2+/2).

If we introduce the variable

X =cos®y,
and use (2.8), the first integral (2.7) can be rewritten as
221 —u?)
12 __ 2
= w21 —y2z e 000 Xm) (X = ),
where
2—(1+vHW —u?
Xp T Xm+ Xn= 1 3 ,
—u
1—(1+v)HW + (VW —uKk)? — K?
XpXm+ XpXn+ XmXn= -2 ,
- (2.11)
XpXmXn= R _

and

o .Q_z 2 as2y’
2 1-7 2 @=wn(14+7 2
= yaan 2= J/oza)z '

We are interested in the case

O<xm<x<xp<l, Xn <0,

which corresponds to the finite-size giant magnons.
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In terms of the newly introduced variables, the conserved quantities (2.10) and the angular differences

P1=Ad1 =d1(r) — P1(—1), P2 = Ado = (1) — pa(—1), (2.12)

transform to

Es  (1—v)JYW K1 —¢)

E=TR = ’ 213
it Voo @213)
_ 1 uxn — vk B — B
Ji= TR = iu2 |:«/Xp — K1 —¢€)+u/xp — xaEQ1 e)], (2.14)
_ 1 [l jp-vOW-—uk) )
e Ae [ o O VX~ xaE( 6)], (215)

4 K Xm ) _ } K1l—¢) }
- m(1-2"1—€)—[uv+ W —uK) — (1 — yn)] ——— — ~xE( — o)},
p1 —1_u2{xp o ( Xp‘ [uv+pv(v uk) — 7 (1= xn)] o= Vv xXp — xnE(1 —€)

(2.16)
4 vW —uKk Xp — Xm - - K(1—¢€) -
Py = { 17(— ‘1—6 — v = 7K) + jux —uS Xy — B — €)Y,
Vi—2 | A= xp) VX — X 1—xp [ n]«/Xp_Xn P
(217)
where we have used the formulas for the elliptic integrals given in Appendix A, and € is given by
e=Xm—Xn (2.18)
Xp — Xn

From (2.13)-(2.15) one can see that the conserved charges are not affected by the y-deformation as it should be. Only the angular
differences are shifted.

Further on, we will consider the case when &£, J> and p; are large, while £ — 75, J; and p; are finite. To this end, we will introduce
appropriate expansions.

3. Expansions

In order to find the leading finite-size correction to the energy-charge relation, we have to consider the limit € — 0 in (2.11), (2.13)-
(2.15), and (2.18). The behavior of the complete elliptic integrals in this limit is given in Appendix A. Taking this behavior into account,
we will use the following ansatz for the parameters (xp, Xm, Xn, v, u, W, K) in the solution

Xp = Xpo + (Xp1 + xp21log(€))e,

Xm = Xmo + (Xm1 + Xm2log(€))e,

Xn = xno + (Xn1 + Xn2108(€))e,

v=vo+ (v1+ valog(e))e,

u=up+ (u1 +uzlog(e))e,

W =Wq + (W1 + W3 log(e))e,

K =Ko + (K1 + K2 log(€))e. (3.1)
A few comments are in order. To be able to reproduce the dispersion relation for the infinite-size giant magnons, we set

Xmo = Xno = Ko =0, Wo=1. (3.2)
Also to reproduce the undeformed case [9] in the ¥ — 0 limit, we need to fix

Xm2 = Xn2=W2=K;=0. (3.3)

Replacing (3.1) into (2.11) and (2.18), one finds six equations for the coefficients in the expansions of x,, Xm. xn and W. They are
solved by

2
v
=1-—0_
Xpo 1—ud
Xp1 = [ ~2vouo(1 - v3)(1 - v} - wd)uy
(1 —=vp)A —up —vy—up)

+2(1—ud) (1 — v — ud)[Kiuo(1+ v3) — (1 — v§)v1]

Fvo(1 =3 - 20y (1 - w3 —v3)" — 43 (1 -3’ (1 -2 - v3)).
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v + (Vouz — UgV2)Up
(1 - uf)?

Xp2=—2Vg

’

— 2031~ v3) + (1= 32+ /(1 —ud — V24 — K21 — ud2(1 —u} —v3)

Km1 = 20— ud)(1—v2 —ud) ’

_up— 2u3(1— v+ (1 —vd)? — \/(1 —ud — vt —4K3(1 —ud)?(1 —ud —vd)
Kot = 200 —ud)(1 —v2 —u) ’

2Kqugvo(1 —ud) + /(1 —uj — v3)* —4K3(1 — ud)2(1 —u} —v)
Wy=— 140 O( 0) \/( 0 0 ( 0)( 0 0 (3‘4)
(]_uo)(]_vo)

As a next step, we impose the conditions for 77, p, to be independent of €. By expanding RHS of (2.14), (2.17) in €, one gets

ugy/1 — v2 —u?
i R (3.5)

J1= 3
1—ug
2vg,/1—vg —uj 1—vi—uj
pr=2 arcsin(—z) —4pug—F5—. (3.6)
1—uj 1—ug

along with four more equations from the coefficients of € and € loge. The equalities (3.5), (3.6) lead to

siny T

L UpE e——,
2,/ T2 +sin®(¥/2) VT2 +sin (#/2)

where the angle ¥ is defined as

2vg,/1 —v%—uf))

2
1—ug

Vo = p2=2(¥ -2y J1), (3.7)

¥ = arcsin<

After the replacement of (3.4) into the remaining four equations, they can be solved with respect to v1, v, U, uy, leading to the following
form of the dispersion relation in the considered approximation

\/1 —v3-ud 11—V} —ud) - aKR(1 - ud)?
2
1—uo 4 1—ug

€. (3.8)
To the leading order, the expansion for 7, gives

2 v3 5
621GEXP[_1—VS<1 — —i—Jz,/l—vO u0>:|. (3.9)

By using (3.7) and (3.9), (3.8) can be rewritten as

in® (2 +T + sin? (¥ )T, + sin?(¥/2) sin®(¥/2)
E— T = T2 +si?(¥/2) —4 M_M%exp[_ 2+ T} / \/1 / / }

T2 +sin®(¥/2) J2 +sin (¥/2)

(3.10)

The parameter K7 in (3.10) can be related to the angular difference p1. To see that, let us consider the leading order in the €-expansion
for it:

Xpo -1

4Kq arctan - ~ 2

[tovolog(16) + 7 (2xpo — (1 — v§) log(16))]

p1=

J A=) Xp0m (Ko — xm1) /(1= uB)xp0

2 -
+ ————[uovo — 7(1 — v3)]log(e). (3.11)
V(A —ud) xpo
So, it is natural to introduce the angle @ as
(]
— =arctan Ap0 _ 1. (312)
2 Xm1

On the solution for the other parameters this gives
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2 232 . 4
Ky = % sin(®) = sin (¥/2) sin(®). (313)
2(1 —up) 2,/ T2 +sin®(¥/2)

As a result, the relation (3.11) between the angles p; and @ becomes

p1 . sinw sinw /7?2 + sin®(¥/2)
@:——(2)/_\712,—4>k72+‘71 > - , (3.14)
2 T} +sin*(@/2) J2 +sin (@/2)

where due to the periodicity condition we should set

D1 :27‘[”1, m eZ.

Finally, in view of (3.13), the dispersion relation (3.10) for the dyonic giant magnons acquires the form

in® 2(J2 + /TR +sin®(¥/2))\/ T} + sin® (¥/2) sin® (¥/2
6—J2:\/m— 4sin*(¥/2) coscbexp[— (72 \/] sin“( /))\/1 sin“(¥/2) sin“( /)]' G15)

JI2 4 sin2w/2) 72 +sin*(/2)

Based on the Liischer u-term formula for the undeformed case [11], we propose to identify the angle ¥ (= "2—2 + 2y J1) with the momen-
tum p of the magnon excitations in the dual spin chain. Now the angular differences are shifted and the leading finite-size correction to
the dispersion relation is modified by cos ® compared with the undeformed AdS4 x CP3. Also notice that this result is consistent with [8]
in the infinite J limit after redefining the momentum p appropriately.

Let us point out that (3.15) has the same form as the dispersion relation for dyonic giant magnons on R; x 573/ subspace of the y-

deformed AdSs x S° [12].3 Actually, the two energy—charge relations coincide after appropriate normalization of the charges and after
exchange of the indices 1 and 2. The only remaining difference is in the first terms in the expressions for the angle &:

3. _ Db
RoxRP): @=S0..,

Rthf,: Dd=pr+---.

All of the above results simplify a lot when one consider giant magnons with one angular momentum, i.e. /3 = 0. In particular, the
energy-charge relation (3.15) reduces to

E - =sin g [1 — 45sin? gcos(rm] — 29 Jp)e 222 0sc g]. (3.16)
We want to point out that our result is different from [16] which has extra cos>(p/4) in the denominator of the phase @.
4. Concluding remarks

In this Letter we considered string configurations on the R; x RP3 subspace of AdSs x CPf,. Imposing appropriate conditions on the
parameters involved, we restrict ourselves to string solutions, which describe the finite-size giant magnons with one and two angular
momenta. Taking the limit in which the modulus of the elliptic integrals approaches one from below, we found the leading corrections to
the dispersion relations. The obtained results are relevant for comparison with the dual field theory, which in the case at hand is the one
parameter y-deformation of the A" =6 super Chern-Simons-matter theory in three space-time dimensions.

It would be interesting to understand how to reproduce the dispersion relation (3.15) by using Liischer’s approach [13]. The dispersion
relation has a specific y-dependence for finite 7>, and it is not quite clear how such a dependence follows from the S-matrix approach.
To this end, we need a generalization of the Liischer’s formulas for the case of nontrivial twisted boundary conditions.
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Appendix A. Elliptic integrals and €-expansions

The elliptic integrals appearing in the main text are given by

Xp
/ = -
; VO =0 = xm)(X —Xn)  /Xp — Xn

K(1—e),

Xp
xdx 2%n
= K(1—¢€)+2./xp» — xnE(1 —€),
X/ VO = 0% = xm (X — xn)  ~Ap — Xn ?

3 In [12], we left a numerical factor A in the definition of the angle & undetermined. Actually, A = 1. Also, the coefficient 1/2 in front of the last term of (4.5) in [12] is
a misprint.
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Xp

/ dx - 2 17(1 —X—’”‘l —e),
; XV o — X0 — Xm)(X — Xn)  Xp/Xp — Xn Xp

Xp
/ dx _ 2 H(_x —xm‘1_€>’
Ja = OV = X0 = xm)(X = xn) (1= Xp)V/Xp — Xn T—=Xp
where
Xm — Xn
Xp — Xn ’
We use the following expansions for the complete elliptic integrals [14]

1 € 1 1 €
K(1—¢€)=—= — ) —=(1+= —
1-¢) 210g<16> 4< +210g<16>)e+ ;
El1—-¢)=1 ! 1+1o € €+
( = 2 g 16 e

2¢/narctan(y/n) —log(f5) 2 —4+/narctan(v/n) + (1 —n)log(f5) ot

€ =

f=nt —e) = 2(1+n) 8(1 4 n)? o m>0.
We use also the equality [15]
AEim) = 1w m) - ———K(m),
q qv/=vv1

where

, v1<0, m<v<l.

=\)1—1
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