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We studyintegrableperturbationsof the cosetCFTs.The modelsarecharacterizedby two
fractional supersymmetriesthat are dual to each other. Generally, these models can be
consideredas restrictionsof new integrablefield theorieswe call fractional supersoliton field
theories.We studythe connectionswith other models suchas perturbationsof WZW models,
supersine-Gordontheory, Gross—Neveumodels,andprincipal chiral models.

1. Introduction

In the short-distancelimit of a (1 + 1)-dimensionalquantumfield theory(OFT),
the massscaleof the model becomesirrelevant, andthe theory is governedby a
conformally invariant quantumfield theory (CFT) [1]. More generally,CFT de-
scribesthe behaviorof OFT at a renormalization-groupfixed point. Thus the
classificationof CFT providesa classificationof all possibletypesof short distance
structure.Given a conformal field theory, thereis no unique massivetheorywith
this prescribedbehaviorat short distances.However, an interestingproblem is
formulatedby requiringthe massivetheory to be integrable.One cancontemplate
classifyingintegrableOFT via their short-distancestructure.As we will see,this is
a rather fruitful point of view, as it will leadto many new classesof integrable
OFT.

It hasbeenconjecturedthat all rational CFTs canbe realizedthrough a coset
constructionof Wess—Zumino—Witten(WZW) modelsand orbifolds. Denotethe
level-K WZW model for the simple Lie algebraG as GK. We will only consider

the cosetCFTs of theform GK ® GL/GK+L. Our aim is to associatean integrable
OFT to eachsuchcoset.

There are primarily two approachesto the stated problem. One method,
initiated by Zamolodchikov [2] is to considerCFT perturbedby certain relevant
operators.For some choicesof the perturbingoperator,it can be demonstrated
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that therearesomeadditionalnontrivial integerspin conservedcurrents,andthis
is takento be a sign that the perturbedtheoryis integrable.The othermethodis to
begin with a OFT that is known to be integrable,and from it to obtain new
theoriesby a specialrestrictionof the Hilbert spacethat preservesthe integrability
[3—7].The restrictionis a massiveanalogof the Feigin—Fuchsconstruction,andin
fact reducesto it in the masslesslimit. In this latter method, the spectrumof

particlesof the newtheoriescanbe deducedfrom the restrictionof the spectrum
of the original model.

Let us briefly summarizetheknown results.The casestudiedin greatestdetail is
the coset SU(2)1 ® SU(2)L/SU(2)l+L perturbed by the operator of dimension
(L + 1)/(L + 3), for arbitrary L. This model is an integrablerestriction of the

sine-Gordontheory (RSG). The exact spectrumand S-matricescan be found in
refs. [5,6]. In an analogousfashion,it hasbeenconjectured[31that perturbations
of the cosetG1 ® GL/GI +L by the operatorwith dimension(L + 1)/(L + h* + 1)
(h’K is the dual Coxeternumberof G) have an S-matrix that is related to the
restricted .~-matrixof the Toda field theory basedon the untwisted affine
Käc—Moody algebra~ henceforthdenotedToda(G~

1~).(Toda(SU(2~’~)sine-
Gordon theory.)Connectionsbetweenthe affine Todatheoriesandperturbations

of CFT were also suggestedin refs. [8,9]; theseauthors’ investigationwas at the
level of equationsof motion,wherethe necessaryrestrictionof the Hubertspaceis
not apparent.

It shouldbe pointedout that some specialcasesof perturbationsof the cosets
G

1 ® G1/G2werestudiedwithout the formalism of restrictionin refs. [10—12].See
refs. [11,491for otherreferencesand a review. Our understandingof theseresults
indicates that they are best understoodas a limiting case of the restriction
formalism. In fact, the connectionof thesemodelsto soliton equationscanonly be
correctly formulatedvia restriction. Let us clarify this statement.From the view-
point of the restriction formalism, for the specialcase of perturbationsof G1 ®

G1/G2 the degreesof freedomof the restrictedmodel are “frozen” out andyield
a - :‘~degeneratemassspectrumof r-particles,where one particle is associated
with eachfundamentalrepresentation(r = rank(G)). In the caseof G = SU(2),this
phenomenonwas explainedin refs. [5,6] where it was shown to yield the correct
spectrumof the perturbedSU(2)1 ® SU(2)1/SU(2)2theory, i.e. a single massive
Majoranafermion. In generalthe massspectrumis equivalentto the spectrumof
massesthat follows from the lagrangianof the Toda(G~’~)theory(diagonalization
of themassterm). Howevertheseparticlesarenot to be identifiedwith the r Toda
fields themselves,evenif classicallytheyhavethesamemass.Forthis specialcase,
the S-matricessimply follow from crossing,unitarity, and the bootstrap.We refer
the readerto the resultsof sect. 7 on the SU(N) cosetsfor anexplicit realization
of theseremarks.

A novel featureof the RSG theories is their invarianceundersymmetriesthat
generalize supersymmetryto a fractional supersymmetry[6, 131. For the RSG
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theories associatedwith the coset SU(2)1 ® SU(2)L/SU(2)l+L, there are two
conservedchargesof Lorentz spin ±2/(L + 2). Thesesymmetrieswere found to
commutewith the exactS-matrix, andwerealso constructedoff-shell in perturba-
tion theory. Similar resultswere found by Zamolodchikovfor L = 2,4 [13].

Our intention in the presentwork is to determinethe general pattern for
perturbationsof the cosetCFT GK 0 GL/GK+L. The main featuresthat can be

concluded from the results of this paper are as follows. The coset CFTs are
invariant under the duality transformationK ~-‘ L. We find perturbationsof the
coset models that preservethe conservationof some fractional Lorentz spin
currents.There are two kinds of fractional spin symmetriesthat are dual to each
other, which we will call Q~and Q~symmetries.For fixed K the seriesof
massivemodelsobtainedby varying L all havethe sameQ(K) symmetry; i.e. there
areconservedchargesin eachmodel of the serieswith Lorentz spin independent
of L and equalto h’K/(K + h*). Becausethe perturbationspreservethe duality,
therealso exist symmetriesQ~of Lorentz spinh*/(L + h*). It wastheQ~type
of symmetrythat wasdiscoveredin the RSGtheoriesin ref. [61,where they were
shown to be fractional supersymmetries.Consider now the case where G is
simply-laced.For fixed K but variable L, the perturbedcosetmodelscanagainbe

derived as a restriction of an integrable soliton theory. However since the r
(= rank(G))bosonicfields of the K = 1 seriesmustbe augmentedby fermionsand
their parafermionicgeneralizationsin the K> 1 generalizedFeigin—Fuchs(FF)
construction,the massivesolitonfield theoryalso containstheseextrafields. These
fields area completeset for the massivetheory. Wewill genericallyrefer to this set

of fundamentalfields as the FF fields. Furthermorethis new augmentedtheory
manifeststhe fractional Q~symmetry,and thusmay be consideredas a kind of
integrablefractionalsupersoliton theory. This representsa new classof integrable

OFT. Considernow the casewhereG is nonsimply laced.Now the generalizedFF
construction(or vertex operatorconstruction)for eventhe G1 0 GL/G! +L theo-
ries requires additional nonbosonic fields [14—161;in the case of G = BN one
additional fermion is neededfor the short root. We find that integrableperturba-
tions of the (BN)I ® (BN)L/(BN)l +L series(WBN-series) are related to Toda
theory on affine superLie algebras.We will not presenta completely general
theory here, but will motivate the above general schemewith some specific
examples.

Our constructionhas some interestingnew consequencesfor somepreviously
known OFTs. The L —* ~ limit of the perturbedcosetmodelsyieldsa current—cur-
rent perturbationof the WZW models,which areclosely related to the principal
chiral models (sigma models) with Wess—Zumino term. The perturbed coset
constructionin this limit providesa new solution to the soliton spectrumand
S-matricesof thesemodels.Furthermore,theseperturbationsof WZW modelsare
seento possesshiddenfractional supersymmetries.Also, the perturbationsof the

SU(N) cosetsfor K = 1 and L —‘ ~ give the SU(N) Gross—Neveumodels.Finally
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the doublelimit K, L —~ ~ yields theprincipalchiralmodels(withoutWess—Zumino
term).

Our conjecturedS matricesfor the SU(N) cosetsindicatethat the K= 1 series

of models areNOT restrictionsof the affine Toda(G~’~)theories.This remark is
basedon the fact that as L —~ ~ in the K = 1 series, the SU(N) Gross—Neveu
models are recovered.This implies that the models for finite L are actually
restrictions of what we call a “deformed” Gross—Neveumodel. This is a new
model;by “deformed”we refer to the ideathat reintroducinga coupling constant

breaksthe G symmetryto the quantumgroup symmetry~q(G).
In order to exhibit the generalityof the constructionwe have included results

from someforthcomingpublicationsby two of us [17, 181.

2. Perturbedcosetmodelsand fractional spin currents

In this section,we review some basicfactsconcerningthe constructionandthe
propertiesof the coset models. We also show how it is possible to choose a
relevant perturbation such that part of the underlying algebraic structure is
preserved.

As statedin the introduction,we will only be concernedwith the cosetmodels
GK 0 GL/GK+L. The embeddingof GK+L in GK 0 GL is the diagonalembedding.
Algebraically, the coset models are defined through the GKO construction[201:
The Virasorogeneratorsare the differenceof the Sugawaragenerators.Namely, if
TK(z) denotesthe Sugawarastresstensorfor representationsof G~’~at level K,
the stresstensorof thecosetmodel is T(z) = TK(z) + TL(z)— TK+L(z). Its central

chargeis

GK 0 GL
c = c(GK) + c(GL) — c(GK+L)

GK + L

12KIpI2 Kh—h’K
=rank(G)— (K+L+h*)(L+h*) +rank(G)( K+h* ), (2.1)

with p the Weyl vectorof G; 12Ip~2= rank(G)h*(h + 1). Herec(GK) is the central
charge of the Sugawaraoperators: c(GK)=KdimG/(K+h*); h(h*) are the
Coxeter(dual) numberof G (dim(G) = (h + 1)rank(G)). In eq. (2.1), we decom-
posed the coset central charge in a way which reveals the existence of a
Feigin—Fuchs-like construction: the first two terms in eq. (2.1) representthe
central chargeof a Feigin—Fuchsfield valued in the Cartan subalgebraof G,
whereas the second term is the central charge of the parafermions of
GK/[U(1)1r~((G) [21,22].
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The Hubertspacesof the cosetmodelsaremadeof the branchingspacesof the

GKO construction.We denotethe latter by [(K; A) 0 (L; A’)/(K + L; A”)] where
A, A’ and A” are integrablehighestweight representationsof G~1~at the appropri-
ate level. They are definedby the decompositionof the tensorialproductof the
representations~°(K; A) and ~°(L; A’) of G~”:

(K~A) 0 (L~A’)
~(K;A) 0 ~(L;A’) = ~~(K+L;A”) 0 [ (K+L;A”) ]. (2.2)

To each branching space is associateda field, also denoted by [(K; A) 0

(L; A’)/(K + L; A”)](z), which is primarywith respectto T(z). By construction,its
conformalweight ~V’ is given by

Cas(A) Cas(A’) Cas(A”)
= + — +n (2.3)

2(K+h*) 2(L+h’K) 2(K+L+h*)

with nonnegativeintegern. Cas(A)denotesthe quadraticCasimiroperatorin the
representationA which is (A, A + 2p), where p is half the sumof positiveroots of
G. The integer n dependson the depth at which the highestweight (K + L; A”)
appearstn ~°(K; A) 0 ~°(L; A’).

Coset modelscan be thought of as representationsof some chiral algebras
[22—241.The chiral algebrasarenot unique; they canbe eitherlocal, e.g.Casimir
or W-algebra,or nonlocal.It is thenonlocalpointof view thatwe will use.Namely,
for fixed K but variableL, we will think aboutthe cosetmodelsas representations
of the nonlocalalgebrageneratedby the nonlocalcosetfield J~(z),

(K~Adjoint)o(L~)
(K+L;~) ](z). (2.4)

The dot denotesthe scalar representation.Its conformalweight is

Aj(J(K)) = 1 +h’K/(K+h’K). (2.5)

Note that this field existsonly for K ~ 2, becausethe adjoint representationis

integrableif andonly if the level is larger thanor equalto two. Note also that we
choosethe scalar representationat level L and K + L in order for the conformal
weight to be independentof L.

By construction,a multiplet of the algebrageneratedby J~(z) is made of
branchingspaces.The multiplets are labeledby two highestweights A’ and A” at



414 C. Ahnetal. / PerturbedcosetCFTs

level L and K + L, respectively:

(K;A) 0(L;A’)

{A’,A”} = ~[ (K+L;A”) ]~ (2.6)

In eq. (2.6), the sum over the integrablehighestweights (K; A) is restrictedto
thosewhichbelongto the equivalenceclassof (A” — A’) in P/Q. P(O) is the weight
(root) lattice of G.

Before analyzingperturbationtheory, let us point out that it is possible to
generalize the construction(2.4) to other weights (in addition to the adjoint
representation).The generalizedconstructionyields new currentsonly for the
non-simply laced algebrasbecausethe newcurrentsare in one-to-onecorrespon-
dencewith equivalenceclassesin 0/0 V where0 V is the long root latticeof G.
Thesecurrentsarealwaysgeneratedby one currentwith conformal weight

xh= S Mod integer (2.7)

K+h’K

with x~equalto half the length squaredof the short root.
Let us now look at perturbationtheory. There exist relevantperturbationsof

coset modelssuch that there is a nonlocal conservedcurrent in the perturbed
theory. The nonlocal conservedcurrent is associatedto the current (2.4). The
appropriateperturbingfield ~pert(Z, 2) is “dual” to the currentJ~(z):

(K.)o(L.)
~pert( z, = [(K + L; Adjoint) ]( z~2). (2.8)

It inducesa relevantperturbationbecause

h*
4(~pert)1_ K+L+h* (2.9)

The field ~pert(Z, 2) is local with respectto thecurrentJ~(z).Indeed,the fusion
rules are

[j(K)] x [lpert} = [~I’] (2.10)

with

(K;Adjoint)0(L;~)L .~ (K+L;Adjoint)

Lh*

= (K+h’K)(K-~-L+h*) ~(j(K)) +~(~pert) = 2+1.1(11’). (2.11)
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Thus,the operatorproductexpansion(OPE)(2.10)is local.We canuse arguments

similar to thoseusedby Zamolodchikovin ref. [2] to obtain the equationof motion
of the current J(K)(z) to first order in perturbationtheory. Namely,

dw
.~J(K)(z 2) = ~ 2)J(K)(z). (2.12)
az

The residuein the OPE(2.10)being a total derivative,thereis a conservedcurrent
of spin 1 + h*/(K + h*) in the perturbedtheory. More precisecomputationgives

a
.~J(K)(z 2) = —H~’~~(z,2) (2.13)

az

with H~”~(z,2)=_AC((K+h*)/L)11t(z)I~~~t(2),where C is the structurecon-
stantof the OPE(2.10). Theglobal conservedchargeQ~

Q(K) = ~(dzJ(’<)(z, 2) + d2H(K)(z,2)) (2.14)

has Lorentz spin h*/(K+h*).
Similarly, by interchangingthe role of z and 2 we obtain a conservedcurrent

3 a
_j(K)(z 2) = —H~”~(z2) (2.15)

a2

with the global conservedcharge

~(K) = ~(d2J(’~)(z, 2) + dzH~(z,2)) (2.16)

of Lorentz spin _h*/(K+h*).
The field by which we are perturbingis symmetric in K and L. Therefore by

exchangingthe role playedby K and L we can constructconservedchargesQ(L)

and Q(~)with Lorentz spin ±h’K/(L+ h*). It was thesesymmetriesthat were
constructedfor the RSG in ref. [6]. In the approachwe are developinghere one
set of conservedcharges,say Q~,will be associatedto an internal symmetry
algebraactingon the multiplet of fundamentalToda(or FF) fields. For examplein
the SU(2) cosets,if K = 2 the symmetryis supersymmetry,and for generalK the
symmetry is the fractional supersymmetryconstructedover the quantum SU(2)
algebrawith q = exp(i~~h*/(K+ h’K)). As we will see, the exact S-matricesare
invariantunderboth the Q~and Q~symmetries.

The two chargesQ~and Q~commute(or anticommutedependingon the
Klein factor we choose):

[QKQi~L] =0. (2.17)
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In the unperturbedCFT this follows from the OPEbetweenthecurrentsJ~ and

[j(K)] x [j(L)] = [11”], (2.18)

with

(K~Adj)0 (LAdj)

11~ (K+L;~) ~(j(K)) +z.1(J~’-~~)=2+1.1(11”). (2.19)

Onecaneasily checkthat the commutationrelation(2.17) also holdsto first order
in perturbationtheory. Onecanalso similarly prove

[Q(Ic)~(L)
1 = 0.

The aboveanalysisdoesnot demonstratethat the perturbedmodelsare integrable.
In our generalframework, integrability is establishedby relating thesemodelsto
restrictionsof integrablesoliton equations.This will be done for some specific
casesin the sequel.

Finally let us commenton the renormalizationgroup (RG) flows. Fromwhat is
alreadyknown for the simplest cosetmodels[13,25—281,it is often conjectured
that, in one direction(say A <0) the perturbationyields a massivetheory(i.e. in
the IR limit, the theory is trivial), whereasin the otherdirection (say A > 0) the

theory is a masslesstheory(i.e. in the IR limit the theory is anotherCFT). More
precisely,in thelatter case,it is conjecturedthat for L >> K, the RG flow defined
by the perturbation(2.8) maps the coset modelsGK 0 GL/GK+L into the coset

modelsGK 0 GL_K/GL. In otherwords the RGflow shiftsL —* L — K. Moreover,
theUV field ~pertCZ, 2), eq.(2.8),flows into the IR dual field J(z, 2), eq.(2.4) with
(L -*L —K).

3. Soliton spectrum and S-matrices for the SU(2) cosets

In this sectionwe considerthe perturbationsof the SU(2) cosetsproposedin the
lastsectionfor arbitraryK and L.

Let uspresumethat the perturbationsdefineintegrablemodels.The perturbing
operators(2.8) are invariant under the duality transformationK —~L. Thus we
requirethat the S matrix respectsthis duality. We also requirethat when K or L
equals1, we recoverthe known result for RSG. In the last sectionwe haveseen
that the S matrix shouldbe invariantundertwo independentsymmetriesQ~and
Q(L) This fact supportstheideathat the S-matrix shouldbethe tensorproductof

two factors,where eachfactor is separatelyinvariantunderoneof the symmetries.
All of theserequirementstaken togetherlead to a unique conjecturefor the S
matrix.
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As usual,we parametrizethe energyandmomentumof the asymptoticparticles

in termsof rapidity 0~:

P.=m~sinh0~, E=m,coshO,. (3.1)

Fortwo particle scattering,define 0 = 0~— 02. We proposethe following two-par-

ticle S-matrix:
5(KL)(0) = S(0) o S~(O). (3.2)

Above, eachof the factors~ or S~ is a restrictedsine-GordonS matrix, and
is describedin detail in ref. [6]. More precisely,for the arbitraryK, L the spectrum

consistsof kinks:

Kab;a,b,(0); b=a±4, b’=a’±~,

a,bE{0,~,1,...j~j=K/2}, a’,b’E{0,~,1,...j~’~=L/2}. (3.3)

An asymptoticN-particle statecanbe describedas

Kaoa,;aba~(01)KQ,a2a~ai(02)... KaN_aN;Q~_,Q~(0N))in,out (3.4)

The S matrix for the process

Kda;d~a~(01)+ Kab;a~b~(02) K~C;~~(0~)+ KCb;C~b~(01) (3.5)

is given by the matrix elements

ç(K) ab(~\ . ç(L) a’b’(~ (3 6
RSGdc~ I R5Gd’c’k )

The factors S~<~areproportionalto [6]

0 [2a+1][2c+1] 1/2 hr—U
S~~~sinh(K2)([2dl][2bl]) ~db+5mnh(K+2)~ac, (3.7)

where
q~Z_q~~ l~T

[n] = 1 with q = —exp . (3.8)
q—q K+2

It is easyto seethat eq. (3.2) satisfiesall of our requirements.It is manifestly

dual.When K (resp.L) equals1, S~,(resp.S~G)becomestrivial, i.e. equalsthe
identity, since it correspondsto the S matrix of a massiveMajorana fermion.
Furthermore,S~ (resp. S~~)is invariantundera Q~(resp.Q~)fractional
supersymmetry;this follows from the on-shell constructionin ref. [6] for RSG*.

* Bazhanov and Reshetikhin have independentlyfound the above tensor product form of the

S-matrix for someapparentlyrelatedspin chainson the lattice(privatecommunication).
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The S matrix (3.2) has some interestingconsequencesfor some other quantum
field theories, namely, perturbationsof SU(2) WZW models, and for super
sine-Gordon(SSG)theoryandits fractionalsuperrelatives.Theseconnectionswill
be exploredin the next sections.

4. Perturbationsof WZW models

Considerthe perturbationsof the cosetGK 0 GL/GK+L proposedin sect. 2 in
thelimit thatone of thelevels,say L, goesto infinity. The CFT becomesthe WZW
model GK. The perturbingoperatorsin this limit havedimension(1, 1) andcanbe
identified with the Kac—Moody currentsJa(z). Thus in this limit, the perturbed
CFT hasthe action

55WZW~ ~fd~z ~Ja(z)ja(2) (4.1)
2iri a

The fractional supersymmetryQ~survivesin this limit. In the WZW theory the
Q(K) symmetryis generatedby the current

J(K)(z) =q~~J~lC1~(z), (4.2)

where qab is the Killing form, j’~ is a modeof the Kac—Moodycurrent(Ja(z) =

~Jz’~ 1), and tpb(z) is the chiral primary field in the adjoint representationof
G. The Q~symmetryhasLorentz spin 0 andbecomesidentified with an internal
symmetryG.

The abovemodel (4.1) is closely related to the principal chiral model (PCM)
with Wess—Zuminoterm [29]. The action for such a model canbe takenas

S=Swzw+aJd2zTr(a~g_1aP.g), (4.3)

where g(z, 2) is takento be an elementof the group G. The secondterm in eq.
(4.3) is the action for the PCM, and it has the sameform as the kinetic term in
~ The mannerin which the models(4.1) and (4.3) differ canbe seenby the
identification of the Kac—Moodycurrentsin termsof the field g:

K - K
Ja(z)ta = — -~-a~gg’, Ja(2)ta = — -~-g’ö2g, (4.4)

where t’~arematricesgeneratingG [30]. The perturbationin (4.1) is thus

(AK2/8iri)f d
2z Tr(a~gg1)(g ‘3

5g). (4.5)
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We turn now to what happensto the spectrumin the limit L —* ~. Wespecialize
the discussionto the caseG = SU(2). This questioncanbe studiedby examining
the S matrix factor S~ in this limit. Recall that in the derivationof S~CJfrom a
restriction of sine-Gordontheory, the restrictioncameaboutby decomposingthe
multisoliton Hilbert spaceinto irreducible representationsof the quantumgroup
~q(5l(2)), and removingstatesin multiplets with SU(2)-spin less than Imax= L/2.

In the limit L goes to infinity, Jmax goes to infinity and the restriction is thus
undone.This implies that the new spectrumis givenby

Ka~(0), a, bE {0, ~,1,..., ~K}. (4.6)

The extraquantumnumbers±refer to the original two-dimensionalvectorspace
of the sine-Gordonsoliton quantumnumbers.The S matrix for theseparticlesis
then the L —‘ ~ limit of

S(0)= S~~(0)0 S5G(X = ~ q = _et~T~’U~2)), (4.7)

where 5SG is the 4 X 4 S-matrix of sine-Gordon(SG)solitons. (Seeref. [6] for the
conventionswe are following in describing the SG S-matrix in terms of the
variablesx and q.)

The L —s ~ limit in eq.(4.7) is somewhatdelicate.Define � = 1/(L + 2), andlet

x = 1 + �0, q = — e’~ —1 + i~�. (4.8)

We now takethe � —~ 0 limit. Recall that the SG S-matrix [31] canbe written as

5
5G(x,q)=u(x,q)if.~(x,q)cr~, (4.9)

[6], where if is a gaugetransformation,

P/~(x,q)=x—x’I~ (4.10)

q 0 00

0 q—q’ 1 0 ~-~~+~_‘ (4.11)

0 1 00

0 0 Oq

and u(x,q) is an overall scalarfactor requiredfor unitarity,

1 (1 —x
2q44~)(1—x2q24~)

u( x,q) = (1 —x2q2) (1 — x2q441)(1 — x2q241) (4.12)
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In eq.(4.10), P is a permutationoperator.In the limit � —* 0,

hr—U 0 0 0

0 ‘~ 0
0 0 liT 0

0 0 0 hr—U

(4.13)

In additionwe have

1 [i7r(2j—2) +0] [iir(2j— 1)—U]

2�u(x,q) —~ [i~(2j —2) — o] [i~(2j — 1) + 0] v(0). (4.14)

The gaugetransformationsif canbe disregardedin the limit. Thus the S matrix
for the particles Ka~,(0)is givenby

5(0) =s~’~(o)05~at(0) (4.15)

where

= v(0)P,~~~t(0). (4.16)

The factor p~~~~t(
0) is a so-called rational solution of the Yang—Baxter(YB)

equation.(The terminology is this: trigonometric solutions of the YB equation
involve the functionsexp(aO),whereasthe rational solutionsarepolynomial in 0.)
This rational factor was anticipateddue to the fact that the Q~symmetry has
Lorentz spin 0 in this limit andcorrespondsto an internalsymmetry G, which is
carriedby the factor S~~t(0)What wasunexpectedis the RSOSfactor S~)~in eq.
(4.15). This factor makesmanifestthe hidden Q~fractional supersymmetryof
the current—currentperturbationof the WZW models. Reshetikhinhasinformed
us of someveryinterestingrecentwork on the solutionof higherSU(2)spin-chains;
hefinds that the exactBetheansatzmethodsrevealthe sameRSOSfactor [32].

Finally, let usconsiderthe double limit K and L —* ~. We havealreadytaken
the L —* ~ limit andshownthat the resultingmodel is a perturbationof the SU(2)
level-K WZW model.As K —* ~,the action (4.1) is dominatedby the kinetic term

for the WZW field g, andis thusnothingother than thePCM. This canbe seenby
rescaling the current J—~J/Vk~,then taking the K—* ~ limit. Just as for the
L —* ~ limit of the Q(I~symmetrydiscussedabove,the Q~ symmetrybecomesan
internal symmetry G in this limit. Thus the full resulting symmetry is a G 0 G
symmetry,characteristicof the PCM. Following the reasoningabove, the K —‘ ~

limit of eq. (4.15) yields an S matrix that is the tensorproduct of two rational
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S-matrices,and thus manifeststhe G 0 G symmetry. This agreeswith the result

found in ref. [33].

5. Minimal superconformal seriesand (fractional) super
sine-Gordontheory

In this section we illustrate the connectionto integrablesoliton equationsby
consideringthe caseof SU(2)K0 SU(2)L/SU(2)K+Lfor K = 2 andvariable L. This
seriesof CFTs constitutethe superminimal series [34,35]. As we will see the
perturbedmodelsare restrictionsof the supersymmetricextensionof sine-Gordon
(RSSG)theory. We also presentthe S matrix for the ordinarySSGtheoryandfor
its fractional supergeneralizations.

5.1. PERTURBATIONOF SUPERSYMMETRICFF CONSTRUCTIONAND SSGTHEORY

From theviewpoint of the generalformalism of sect.2, the superpartnerto the

energy—momentumtensoris the current J(z) in eq.(2.4), with dimension~. Thus
if we perturb the modelswith the operator(1~pertgiven in eq.(2.8), the supersym-
metrywill not be broken. This operatorhas dimension

L1(l~per~)= (L + 2)/(L + 4) (5.1)

by eq.(2.9). The integrabilityof the aboveperturbedmodelscanbe establishedby
relatingthem to the SSGtheory at specialrationalvaluesof the coupling.

The fields of the supersymmetricFeigin—Fuchs(FF) constructionfor the super-

minimal series[35] can be related to the SSG fields. Introduce the usual super-
spacecoordinatesz,0 (and 2, 0) and covariantderivative

D=a
0+0a~ and D=a~+O35. (5.2)

As usual z = ~(t + ix). The holomorphicfields of the FF constructionconsistof a
singlesuperfield 1’ = ~‘ + Ui/i’, with the propagator

Z’(z1,01)s~1’(z2,02)=—log(z1—z2—0102). (5.3)

The energy—momentumtensoris

T(z) = ~d~’a4’— /i’a~’—iV~a0a
2~’, (5.4)

where

a~=~2(L+2)(L+4) . (5.5)
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Define the supervertexoperators

Va(Z,6)=exp(i~a’I’(z,0)). (5.6)

The screeningoperatorsare

V±=fdZdOVa±(Z,0) (5.7)

andhavedimension1, where

/L+4 /L+2
a+~2(2)~ ~V2(L+4)~

The primary fields of the minimal seriesare

c1~mn= exp(i~/~amncD’), (5.8)

where

amn = ~-(1—m)a~+~(1 —n)a_ (5.9)

with 1 <m <L + 1, 1 <n <L + 3. The Neveu—Schwarzsectoris givenby n — m =

even;the Ramondsectorby n — m = odd.
Considernow the SSGtheorywith the euclideanaction

S = (1/f3~)fd
2zd20[DcPDcP + m cosdi]. (5.10)

The constant13 is a coupling constant.We take the conventiond2z= i dx dt/2.
Following the reasoningin ref. [6] the superFF fields are identifiedwith the SSG
fields by requiring one of the operatorsin the potential of eq. (5.10) to be a
screening operator. Expanding cos ‘l = ~[exp(iD) + exp(— i’I)], we take the
exp(— irk) term to be a screeningoperator.Sincethe SSGpropagatoris

rk(z
1,01)rk(z2,02) —(/3

2/4ir)log(z,—z
2—0102), (5.11)

the SSGfields are related to the FF fields by the rescaling

(5.12)
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Thuswe identify

13 p2 L+2

i~i~~a_ 8~2(L+4) (5.13)

This identification hasalso beenmadein ref. [36].
Since the screeningoperator has dimension 1, the part of the action that

includesonly the free piece and the screeningoperatorcan be consideredas a
CFT; it is a superLiouville theory. The extratermin the action exp(iprk’/v~i~)is
treatedas a perturbationandis equivalentto the rk

13 primary field as canbeseen
from eq. (5.8). The dimensionof this operatoris (L + 2)/(L + 4), in agreement
with the generalresult (2.9). It mustbe emphasizedthat the decompositionof the
action(5.10) into a conformalpieceandperturbationis partly heuristic.The action
for the conformal piece is not sufficient to encodethe truncationof the Hilbert
spaceoneperformsin the superFF construction(projectionof null vectors).Thus
the spectrum of the perturbed super minimal series is not equivalent to the
spectrumof the SSG, but must be obtained as a restriction of it, as will be
describedbelow. Also, the ordinary (unrestricted)SSG theory doesnot have a
backgroundchargeandcorrespondsto c = ~ in the masslesslimit.

The aboverelationbetweenperturbedsuperFF theoryandSSGcanbe further
justifiedusingperturbationtheory, aswas donefor the SG theory in ref. [8]. As for
eq.(2.12), if a CFT is perturbedby anoperatorof theform (A/2iri)f d

2z‘Ppert(Z, 2),
then the equationsof motionbecome

a dw
~F(z, 2) = A~~rkpert( W, 2)F(z). (5.14)
az

In order to preservethe ~2 symmetry q5’ —* —4’ of the superFF construction,we
makethe q5~perturbation~2 invariantby taking it to be

rkpert= —~cos(~(z)~(2), (5.15)

where m is consideredas a perturbation parameter. (For the discussionof
equationsof motion we haveset )3/ %I~= 1.) The equationsof motion computed
from eqs.(5.14)and(5.15) are

m - - m
a~/i=—-~-cos(4)i/i, a~i/i=

m — m2
~ —~—cos4sin4, (5.16)
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TABLE 1

Dynkin diagramsfor (affine)superLie algebras

0-0- ...
~ 02

0NI ~

B(O;N) O~0 ...
a

2 0~~1

‘kO; N) O~EQ—Cj--... . .

a0 a aNI

0N

a
1

A
1210;2N—I) cJ—...o—— . . .

~ 0N

A14k0;2N) Q~~CJ—.Q.._.. . .

~ ~i a~ 0N-I aN

C12\N + I) S~O..........0..... . .

a

0 a1 02 aNI aN

*The convention followed for these Dynkin diagrams is that the darkenedcircles refer to the

fermionic simple roots.

exceptfor the last term in brackets.The aboveequations(including the term in
brackets)are the same as follow from the action (5.10); thus to first order in
perturbationtheory, the super FF fields satisfy SSG equationsof motion. The
additionalsecondorderterm in the third equationof (5.16) arisesfrom elimination
of the auxiliary field F in ‘P = ~ + Ui/i + ~ + OOF. This extra term can be
recoveredin perturbationtheoryby requiring rkpert to be invariant undersuper-
symmetry.

The SSG theory is integrablebecauseit is equivalentto Toda theory on the

twisted super affine Lie algebraC~
2k2)[37—39].The equation of motion of the

SSG theorycan be written as a superzero-curvaturecondition. The generalized
Dynkin diagramof C~2k2)can be found in table 1. The conventionfollowed in
these diagrams is that the darkenedroots refer to the fermionic ones. Let
(e,,f,, h, a.V i = 0, 1) be a Chevalleybasisfor C~2~(2)satisfying

[h
1,h3]= 0, {e,,f3} =

[h~,e1] = (ai”,a~)e~, [h~,f1] = _(a/,a1)f~.
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The generatorscanbe written as

e1=G~, f1=G~, h1=—H/2

e0= ~ f0 = (1/A)G~, h0 = H/2, (5.17)

where A is the affine, or spectral,parameter.The generatorsin eq.(5.17) satisfy

[H,G~’
2] = ±+G~’2~,

(G~~,G~P}= —(G~),G~)}=

{G~),G~2}= (G~),G~)}= ±~j ±

[J~,J]=2H, [H,J~]=±J~,

{G~2,G~}= 0,

(G~),G~)}= (G~2,G~~)=

Note that H and ~ themselvesgenerateOSp(1,2). The lowest-dimensional
representationof C~2k2)is givenby

H= ~diag(1,0, —1), H= ~diag(1,2,1),

1010 1 000
~ 0 0 1 , Gm=~ —1 0 0

000 010

1 0 —1 0 1 0 0 0
G~~=~- 0 0 1 , G~= 1 0 0 . (5.18)

~ü 00 1010

Define a superfieldvaluedin the Cartansubalgebra‘P = ‘P(x,0, 0)H. The SSG

equationsof motion areequivalentto the superzero-curvatureconditions

{D+A,D+A}=0, (5.19)

where

D +A = e”D e”” + i~/~e’~Ae”1~

D +A= e”1~’De” + i’,I~e~’Ae~’. (5.20)
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Above, A and A are sumsof the positiveand negativesimpleroots respectively,
i.e.

A=e0+e1, A=f0+f1. (5.21)

The zero-curvatureformulation along with its associatedquantuminversescatter-
ing problemcan in principle be usedto solve the model exactly. However as we
will see, for our purposesthereis no needto carry this analysisthrough.

The SSGtheoryhasthe conservedtopological current,

= (1/~)�~a~. (5.22)

The soliton sectorconsistsof field configurationswith non-zerotopologicalcharge.
Considera solution with i/i = i/i = 0. In this situationthe equationsof motion (5.16)
are the same as for sine-Gordontheory up to a factor of 2 (since sin24 =

2 sin~ cos4). Using known topologicalsolutionsof sine-Gordontheory, a solution

of the SSG theorywith nonzerotopological chargeis

= 2tan’[exp(mx/2)] . (5.23)

The topological current (5.22) is normalizedsuch that the above solution has
topological charge + 1. Note that the normalization of the topological current
(5.22) differs from the sine-Gordonnormalizationby a factor of 2, a fact that will
be important later. A generalsoliton solution hasa fermionic partnerof the same
mass by supersymmetry.There also exist antisoliton solutions with topological
charge — 1, which also havefermionic partners.Thus we expect that the soliton
sectorconsistsof two supersymmetrydoubletswith oppositetopologicalcharge;all
particleshavethe samemass.

5.2. SOLITON SPECTRUMAND S MATRICES OF THE RESTRICTEDSSGTHEORY

Our conjectureis that the soliton spectrumand S matrices of the above
perturbationsof the superminimal series are as given in eqs. (3.2) and (3.3).
Namely,

SRSSG(O)= S~~
2~(o)0 S&’~(o). (5.24)

In order to developthe RSSGtheory in analogywith RSG,we would needto start
with the S matrix of thesoliton sectorof SSG,andfrom it derive the RSSGresult.

Unfortunately, despite several attempts,the S matrix of SSG solitons remains
unknown.However,sincewe alreadyare in possessionof the soliton spectrumand
S matrix for the restrictedmodel, we can reversethe logic and undo the restric-
tion. This will provide a new solution of the SSGtheory, andwill be describedin
the next section.
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Herewe will discusssomeof the featuresof the RSSG S-matrix,relatingthem
to the super FF and super Landau—Ginsburgconstructions.The restriction of

quantumnumbersin the RSSG S-matrix canbe comparedto the implicit restric-
tion in thesuperFF construction,following the reasoningin ref. [61.The topologi-
cal charge t of an operator is defined as [fdxJ°,eY]=t~, where J’~ is the
topological current. From the form of the primary fields ‘~mfl in eq. (5.8), the
relationbetweenthe SSGand superFF fields (5.12),andthe properlynormalized
topological current (5.22), we find that the primary fields ‘Pmn havetopological
charge

413 L+2
= = (1—rn) —(1 _n)( L + 4)~ (5.25)

The fields with integral topological chargeare Dm1. Since m ~L + 1, the mini-
mum integral topologicalchargeis —L. Thus thereare effectively L + 1 minima in
the restricted SSG potential, in accordancewith the super Landau—Ginsburg
description [401.Comparethis to the spectrumof kinks Kab;ab(0).Considerthe
quantum numbers a’, b’ E (0,~,1,.. . ~ If we interpret the labels a’, b’ as
describinga kink that connectstwo degeneratevacua, then the numberof such
minima is 2j~ + 1 = L + 1, in agreementwith the above reasoning.The other

quantumnumbersa,b label the statesof a supermultiplet,which consistsof two
particles, KO~a~b~and KiI;a~h.

Finally we point out that the RSSG theory at the specialvalue of L = 2 is an
integrableperturbationof an N = 2 CFT at c = 1. This follows from the fact that
both the Q~and Q~symmetriesareordinary supersymmetriesin thiscase.

5.3. THE(FRACTIONAL) SSG S-MATRIX

We presenthere the result for the S matrix of the SSG solitons.As explained

above, we can undo the restriction of the RSSG theory to deduce the SSG
S-matrix. In this procedurethe factor S~)Jis unaffected;howeverthe factor ~
becomesan ordinarysine-Gordonsoliton S matrix, with a different dependence
on the coupling.Since 13

2/4~r= (L + 2)/(L + 4), weare led to definea function y
of the coupling 13 as

132/277.

L+2wiy(/3)= 1_p2/4~ (5.26)

The SSGspectrumthenconsistsof kinks Ka~(0),a,b E (0,~,1}, with S matrix

Sss~~(O)S~i~2)(0)oS
5~(x=e°~’,q=_e1~1’). (5.27)
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The supersymmetryof this S matrix is carriedby the ~ factor andactson the
a,b indices. The on-shell supersymmetryleavesthe secondindex b of the kink
K~unchanged.Thus the superpartnersare K~1and Kj±1.For K = 2 thefractional
chargesQ and Q satisfy the supersymmetryalgebra[13]

Q
2P Q2P QQ-1-QQ=T, (5.28)

whereT is a topologicalcharge.The additional topologicalgeneratorsin the above
algebraare characteristicof supersymmetryalgebrasin soliton sectors[41]. Thus
we havethe unexpectedresult that the S matrix of SSG solitonsis equivalentto
the tensor product of an S matrix for SG solitons with the RSOS S-matrix for
perturbationsof the tricritical Ising model. The completespectrum, including
bound states,can be deducedas usual from the pole structureof the above S
matrix.

Note further that as 132/477. —* 1, this is the sameas the L —~ ~ limit of analysis
of sect. 4. This meansthat the perturbationsof the level-2 WZW modelsconsid-
ered there are equivalentto SSG theory at p2 = 4ir. Another way of thinking
aboutthis phenomenonis that in the L —* ~ limit of the cosettheories,global G
invarianceis achieved.However, reintroducingthe coupling p2 breaksG to the
quantumgroup~i’q(G).The enhancedSU(2) symmetryis exactlyanalogousto what

occursin the SGtheoryat 132/877.= 1 [42].
The aboveanalysiscanbe extendedfor arbitraryK. The resultyieldsaspectrum

Ka~,,a, b E (0, i,.. ., ~K}. The resulting S matrix is for a new integrablemodel we

will refer to as the fractional super sine-Gordontheory (FSSG). Due to the
generalizedFF constructionof the cosetmodels,the field contentcan be takento
be a single boson plus a 7~K parafermion.We define the coupling 13 via the
propagatornormalizationas in (5.11). This model hasthe S matrix

~ _eT/~), (5.29)

where now

K 2132

8~r—Kf32~

The abovefunction y(13) wascomputedin exactlythe samemanneras for (5.26),
namelyby usingresultsfrom the generalizedFF constructionin ref. [22]. Also, as
for the SGandSSG theories,for specialvaluesof the coupling,namely

p2/877. 1/K,

thesetheoriesare equivalent to the perturbationsof the level-K WZW models
studiedin sect. 4. Thesetheorieswill be morefully developedelsewhere[181.
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6. Perturbations of WB-seriesand Toda on classicalaffine superalgebras

In this section, we develop the connection between WB models and Toda
models on superalgebras.It is the first step towards the generalizationof the
previoussectionon SU(2) to largeralgebras.The main point we want to stressis
how one should add fermions and/or parafermionswhen moving to nonsimply

lacedalgebrasand/orhigher levels.In otherwords,oneshouldconsiderToda-like
modelson superalgebrasor more exotic algebras.The WB modelsare the coset
models~ 0 B~3/B~+ ‘~. (The numbersin the squarebracketsare the levelsof
the representationsof B~.)The Virasorocentralchargeof WBN-modelsat level L

is

(2N—1)(2N+ 1) 1
c=N 1— +—. (6.1)

(2N+L)(2N+L —1) 2

The parafermionof the level-onerepresentationsof ~ is a free fermion (because
BN has only one simple short root whose squarelength is one). Thereforethe
Feigin—Fuchs-likeconstructionof the WBN models involves bosonic fields aj
valuedin the Cartansubalgebraof BN togetherwith a free fermion i/i [14—16].The
~ termin (6.1) is the centralchargeof thefermion andthe full Feigin—Fuchsstress

tensoris

T(z) = _~(a~)2+iaop.a2~+~ (6.2)

with p the Weyl vectorof BN, and

1
a

0 ~(L+2N—1)(L+2N)

The screeningoperatorsare in two-to-onecorrespondencewith the simple roots,
a1,..., aN, of BN. They are

V~’÷(z)=exp(ia±ak~4),fork=1,...,N—1,

V~’(z)=l/i(z)exp(ia±nN~4) (6.3)

with a~+a..= a0, and a~a_=—1. Our conventionfor the simple roots is given
in table 1. The screeningoperatorshaveconformalweight one.

The WBN models were initially introduced as representationsof a Casimir
vertexoperatoralgebraof BN, i.e. the local chiral algebraof currentsW(J)(z)with
conformal weight 1.1(j) = m(j) + 1 where m(j) runs over the exponentsof BN:
m(j) = 1,3, . . . , 2N — 1. But as we explained in sect. 2, the cosetmodelscan also
be interpretedasrepresentationsof a nonlocalalgebra.Howeversincethe casewe
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are consideringis K = 1, the current (2.4) doesnot exist, andwe haveto usethe
alternative construction mentioned in sect. 2. For the algebra BN, the only
nontrivial representativeof 0/0 V is the highestweight ~ of the vector repre-
sentation.The nonlocalcurrentassociatedto co~is

(1; n) 0 (L;~)
G(z)=[ (1+L;~) ](z)~ (~ =w~). (6.4)

Its conformalweight is 1.1(G)= N + ~ (one-halfis the conformal weight of (1; fl)

and N is the depth of (1 +L;~) in the tensorial product(1; ~i1)0(L;~)). Obvi-
ously for N = 1, the currentG(z) is the supercurrentandwe aresimply describing
the superFeigin—Fuchsconstructionfor G = SU(2). Moreover becauseSO(3)
SU(2)/~2,the cosetBç’~0 Bç’~/Bç’~~is equivalentto A~~

10 A[~’~]/A[~~2].
Todamodelson the finite-dimensionalsimply-lacedLie algebraX wereshown

to be equivalentto the WX-models [23,24]. Howeverin the caseof a nonsimply
laced algebra the quantization used in ref. [23] encountersdifficulties due to

screeningoperators.In the caseof the algebraBN, thereis only oneshort simple
root, aN (of length one). One finds that a free fermion should be addedto the
vertexoperatorsassociatedto the short simple root. Thus the short simple root
acquiresa fermioniccharacter,and,starting from the Lie algebraBN we are led to
the super Lie algebraB(0; N) = OSp(l,2N). It is the only classicalsuper Lie
algebra[43] (with non-singularCartan matrix). Its Dynkin diagram is shown in
table 1.

Let us now describethe B(0; N) Todamodels.Let (e’, f
1, ajV), j = 1 to N — 1, be

the bosonicgeneratorsof B(0; N) and (es,~ a/), s = N, the fermionic ones.Let
‘P(z, U) = 4(z)+ UiJi(z) + ~(z) + UOF(z) be a superfieldvalued in the Cartan

subalgebraof B(0; N):

cP(z,O) = ~a7’P3(z,U) + ~a5V’Ps(z,O). (6.5)

Thenthe B(0; N) Todaequationsof motion for the superfieldcP(z,o) are

DD’P + — ~ e
4’~ + ~UöEajv e4 ,a~)= 0, (6.6)

where/3 is a couplingconstant;a(a~)are the bosonic(fermionic) rootsof B(0; N):

aj=ej~cj+l, for j= ito N—i; as—EN for s=N.
Note that the 00 term associatedto the bosonic simple roots breaks the

supersymmetry.Only OSp(1,2) has no bosonic simple roots; in that case (6.6)
reducesto the supersymmetricLiouville equationin agreementwith the equiva-
lence between the WB

1 models and the minimal superconformalmodels, as
explainedin sect.5.
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As in thesuperLiouville case,eq.(6.6) canbe written as asuperzero-curvature
condition. Namely, if we define

D +A = e~~~”2D e~”2+ v~e~”2Ae~’/2,

15 +X= e~~215 e~~”2+ v’~e~~”/2Ae’~”2 (6.7)

with A = E
5e5+ UY1e1and A = L~f5+ 6~f1,then the superzero-curvaturecondi-

tion

{D+A,D+A}=0 (6.8)

is equivalentto the B(0; N) Toda equations.The superzero-curvaturecondition
(6.8) ensuresthe classicalintegrabilityof the theory.

In components,eq. (6.6) tells us that the fermions of the superfields‘P’(z, 0)
associatedto the bosonicroots a1 decouple.They can be consistentlyset to zero.
The other equationsof motion are

aa4(z) = (m
2/f3)e’~’f~ (6.9)

for the bosonicsimple roots,and

- rn - rn_
= —i/i e4(’~’’~N) a~p= — —~i e3~~N)

/3 [3

— rn — rn2
aa

9Y~ = — — i/i if, e~”~’~— e
2~,aN) (6.10)/3 p2

for the fermionic simpleroot aN. (We haveset
111N

The quantizationof the (super) Liouville models by Gervais and Neveu [44]
leadsto the minimal (super)conformal series[45,46]. In the sameway, quantiza-
tion of eqs.(6.9) and (6.10) leads to the Feigin—Fuchsconstructionof the WBN
models; the field contentsare the same: a bosonic field valued in the Cartan
subalgebraof BN plus onefermion associatedto the short simple root of BN; the
improvedstresstensorof the B(0; N) Todamodel is the stresstensor(6.2); andfor
specific values of the coupling constant /3(f3 = ia) the vertex operatorsin the
r.h.s.of the eqs.(6.9) and (6.10)becomescreeningoperators.

Let usnow look at perturbedWB theoriesby comparingthem to Todamodels
on affine superalgebras.More precisely we will analyze which of the relevant
perturbationsof the WB modelscanbe describedby restrictedTodamodelson
affine superalgebras*.We will only be concernedwith the classicalaffine super-
algebras(with nonsingularCartan matrix). They are named B~k0;N), A~

2k0;
2N — 1), A~4~(0;2N) and Ct2~(N+ 1) [43]. The correspondingDynkin diagramsare

* We expectthat thesemodelsare not strictly restrictionsof an affine superTodatheorybut actually

of a relatedmodelwith extra interactionsfor the non-simpleroots, just asfor perturbationsof the
simply-lacedcosets(seesect. 7).
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given in table 1. Note that in all casesthe horizontal subalgebraof the affine
algebra (the one obtained by deleting the extended roots a0 in the Dynkin
diagram)is the superalgebraOSp(l,2N). Moreover,in all casesexceptC~

2kN+ 1),
the extendedroot is a bosonic root.

The equationsof motion for the Todamodelson affine superalgebrashavethe

sameform as eq. (6.6) for Todamodels on finite superalgebras.However in the
affine case,the sumis over all the simple roots of the affine superalgebra.Thus
onehasto projecteq. (6.6) onto the horizontalalgebrataking into accountthat the
extendedroot is a

0 = d — 0 with d the derivation and U V ~1a3”a1~’+~5a~’a~’
where a V are the dual Käc labels of the affine superalgebra.The projected
equationsof motion canbe easilywritten down. In thelimiting caseC~

2k2),it gives
the equationsof motion of the SSGmodel studiedin the previoussection.

As in the finite case,the equationsof motion of the Toda modelson affine
superalgebracanbe written as a zerocurvaturecondition. The connectionis the
onegiven in eq.(6.7) but it is now written with the generatorse and f of the loop
superalgebra.

Becausein all casesthe horizontal algebraof the affine superalgebrais the
superalgebraOSp(l,2N), all Toda modelson affine superalgebracan be inter-
preted as perturbationsof the OSp(1,2N) Toda models. By looking at the
equationof motion it is easyto determinewhich perturbingfields the affine Toda
models correspondto. But not all the perturbationsare consistent with the
restriction. A caseby caseinspectionrevealsthat:

(i) The B~k0;N) Todamodelsdescribea perturbationby an irrelevantfield.

(ii) The restrictedA~2k0;2N — 1) Todamodelsdescribethe perturbationof the
WB models by the relevant perturbing field ‘Ppert = [(1; ) ® (L; . )/(1 +
L; Adjoint)]. Its conformalweight is ~pert = (L + i)/(L + 2N). As for simply laced
algebras[10] it is conjecturedthat the S matrix of this perturbedWB model with
L = 1 is the minimal S-matrixof the A~2~(0;2N — 1) Todamodels.The spectrumof
the massesof the bosonsdependsonly on the Dynkin diagramirrespectiveof the
fermionic or bosonic characterof the simple roots [39]. Therefore the massesof
the bosonsof the A~2k0;2N — 1) Toda models are the sameas the massesof
bosonsof the B~1kN)Todamodel, namely,

Mk = 2Msin(lrk/2N), fork = 1 N—i,

MN=M. (6.11)

Also the WSO(N)modelsat level one(i.e. S0(n)
10 SO(n),/SO(n)2)are equiva-

lent to a free bosoncompactifiedon a circle of radius R = V~T/2.The perturba-
tionswe aredescribingcorrespondto the perturbationof the Gaussianmodelsby
thevertexoperatorsof weight (i/2R

2).
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(iii) The A~4k0;2N) Todamodelshaveno restrictionfor integrableperturbation
of WB models.

(iv) The numberof fermionic fields in the C~2kN+ 1), N ~ 2, Toda model is
two, therefore there is no obvious interpretation of the C~2~(N+ 1) Toda as
perturbationof WB models. But if there exists a restriction strong enough to
identify the two fermions, then the restricted C~2kN+ 1) Toda modelswill be
interpretableas a perturbationby the relevant field [(1; ) 0 (L; . )/(L + 1; El)]

with conformalweight 1.1 = (L + N)/(L + 2N).
We stressonce more that as in the case of the simply laced algebrasthe

connectionbetweenthe perturbedWB modelsand the minimal Todamodelson
superalgebrasis expectedto hold only for L = 1. For L> 1 the perturbedWB
modelsare related to generalizationsof theToda models.

7. Other groups: conjectured S matrices of the SU(N) cosets

To show how the S matricesof the SU(2)cosetsgeneralizefor largeralgebras,
let us give the conjectured S matrices for the SU(N) cosets: SU(N)K 0

SU(N)L/SU(N)K+L. The generalizationto othergroupswill be clear.Becauseof
the invarianceunder the two nonlocal conservedchargesQ~and Q~,the S
matricesfactorizeinto a tensorialproductof two RSOS-like S matricesmultiplied
by some CDD factors.To be morepreciselet us first introducethe highestweights

n = 1,. .., r = N — 1, of the fundamentalrepresentationsR~of SU(N). Note
that the weights w,, defineintegrablerepresentationsof SU(NY’~at level one. In
the perturbedSU(N) cosetsthere are r families of kinks, which we denoteby

n = 1,.. . , r. Forfixed n, all the kinks of thefamily (Kr) havethe samemass
M~:

sin(nir/N)
M =M n=i ... N—i. (7.1)

sin(ir/N)

More generally,for the groupG the massspectrumis equivalentto the spectrum
of massesin the Toda(G~l))theory.

The kinks in (K,,) are labeledby four highest weights of SU(N). A kink of

rapidity U is K~(’~’~’”(0) where aK, bK (resp. aL,bL) denotehighest-weight

representationsof SU(N (1) at level K (resp.L). A pair of weights(a —* b) is said
to be n-admissible iff the representationb appearsin the tensorial product
a 0 R~.Note that the multiplicity of a representationin (a 0 R,,) is alwaysone so
that we do not haveto specifythe SU(N) homomorphismdefiningthedecomposi-
tion of (a 0 R~)into b. Only n-admissiblepairs of (a —~ b) appearin the kinks of

IaK-.bK\
the family (K,,). The kinks K,,I canbe thoughtof as the tensorialproduct

\aJ—~ U

of two elementarykinksof the perturbedcosettheorywith oneof the levelsequal
to 1; or alternativelyof anSU(N)RSOS statisticalmodel.
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The S matrix for the kinks in the family (K,,) and(K,,,) is conjecturedto be

S (O~=X (
0’15[K](0~ 05[L](0’~ 172nmk / nm~ / nm k / nm\ / ,

where Sj~
1(U)is (up to a scalar function) the trigonometric RSOS (w,,; Wm)

.~-matrixwith the quantum group parameterq = — exp(— i~rr/(K+ h’K)), where

= N. See e.g. ref. [47] for a precise definition. Following the diagrammatic
notationof ref. [6] the matrix elementsof S,,m(0)for two kink scatteringare

n rn n

Xnm(0) d>~K(0) . d>~L~U). (7.3)

Xnm(U) are the standardSU(N) CDD factors;seee.g. refs. [10,12,33,491.
Eq. (7.2) is the most natural generalizationof the SU(2) cosets S-matrices.

Insteadof giving a detailedproofof it (the detailswill be describedelsewhere),we
will just offer threechecks:

(i) For K (resp.L) = 1, the RSOS S-matrix factors
5[K] (resp. 5[1~) are trivial,

i.e. areequal to 1. Thuswhen K = L = 1, the S matrices5,,,,, reduceto the CDD
factors Xnm(0). This gives the known result [10—12,49].In order to clarify a
confusion in the existing literature, we point out that the resulting r = N — 1
particlesare certainlynot the particlescorrespondingto the r bosonicfields of the
SU(N) affine Todatheory. Oneshouldnot be misledby the fact that thespectrum
of massesof the affine Todafields is the sameasthe spectrumfor the families of
kinks. For this specialcasethe S-matrix canbe alternativelyderivedsimply from
this spectrumof massesandthe bootstrap.Furthermore,aswe will indicatebelow,
it is not evencorrect to identify theseK = L = 1 modelsas restrictionsof SU(N)
affine Todatheory.

(ii) We can considerthe theoriesin the limits consideredin sect. 4 for SU(2).
For K = 1, L —* ~, the modelswe arediscussingbecomethe SU(N) WZW models
at level K = 1 perturbedby the J”(z)J”(2) operators.Theseare nothingbut the
SU(N) Gross—Neveumodels.This canbe easilyestablishedby bosonizationof the
Gross—Neveumodels. (See e.g. ref. [48] and referencestherein for a study of
the Gross—Neveumodels.)On the other handwhen L -~ the SU(N) trigono-
metric ,~ matricesbecome the rational SU(N) ~ matrices. Therefore the S
matrices(7.2) go into the known S matricesof the SU(N) Gross—Neveumodels.
This result indicates that the perturbationsof the cosetsG1 0 GL/Gl +L can be
formulatedas restrictions of a “deformed” Gross—Neveumodel, rather than a
restriction of affine Toda theory. By “deformed” we refer to the fact that by
reintroducinga coupling /3 into the perturbedmodels,the symmetryG is broken
to the quantumgroup ~‘q(G),in completeanalogyto the results in sect.4. These
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new modelswill be further describedelsewhere[19]. We presenthere (7.4) the
action for thesemodelsfor the caseof SU(N):

1
S= -~fd~za~4~a~+m2~ cos —~=— , (7.4)

a>O

where a is a positiveroot of SU(N); 4 is a field valuedin the Cartansubalgebra
and /3 is a coupling constant.Note that this action is hermitian,unlike the action
for the affine Toda theory. The aboveaction (7.4) can be derivedat the SU(N)
invariant point by inserting the bosonizedform of the Kac—Moody currents(see
the vertex operatorconstructionsat level 1 in refs. [14—16]into the action (4.1).
Following the reasoningabovefor SU(2),the S-matricesfor the SU(N) deformed

Gross—Neveumodelsareconjecturedto be

S(U)nrn =XnrnSnm(U),

where X,,rn are the standardCDD factorsusedabove,andS,,,,, areproportionalto
(up to scalarfactorsrequiredfor unitarity) thetrigonometricvertex-type.~matrices

of the quantum group SUq(N) acting in the tensorproduct (co,, 0 COrn). In other
words this S-matrix is the unrestrictedform of eq.(7.2) for one of the levels K or
L equal to 1.

(iii) Following the reasoningin sect. 4 for the SU(2) case,when K —* ~, L —‘ so,

the perturbedSU(N) coset modelsbecomethe SU(N) principle chiral models.
On the other hand, as explainedabove, the trigonometricSU(N) .~-matricesgo
into the rationalSU(N) /~-matrices.Thereforein that limit, the S matrices(7.2)
become a tensorialproduct of two SU(N) rational £~-matricestimes the CDD
factors.Theseare the S matricesof the SU(N) nonlinearsigmamodelsfound in
ref. [33].

8. Conclusions

We have identified the main featuresof a classificationof integrablemassive
quantum field theory that parallelsthe classificationof rational CFT. We can
summarizeour strategyas follows. We considerthe generalizedFF fields as the
field contentof an integrablefield theoryandits (fractional)supergeneralizations.
Then we restrict this soliton theory to obtain a minimal series. The general

scheme,along with connectionsto other models, is better summarizedby the
diagramin fig. 1. The simplest realizationof this patternis for the K = 1 series
which involve deformedGross—Neveumodels.Having provided the structureof
the perturbedcosetmodels,we may now proceedto “unrestrict” thesemodelsas
we havedone for somespecific casesabove.In generalone therebydeducesthe

exactsoliton spectrumand S matricesof somenew integrableQFTs.Wewill defer
the completeformulation to a futurepublication [19].
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PerturbedGK 0 GL
models GK+L

/
mass—~0

/ _
Minimal

CosetCFTs

WZW+J.~ FJF.

construction

K . ~ Restriction _______________

Free Bosons
+ Parafermions

break
G invariance

mass . 0
PCM __________

(Fractional)
Soliton QFTs

Fig. 1. IntegrablemassiveQFTsandtheir relations.

Our resultsmay be of interest for applicationsto condensedmattertheory. We
haveindirectly demonstratedthe existenceof fractional Lorentz-spinexcitationsin
a variety of hamiltonianspin systemsin one spatial dimension. For example,the
fractional supersymmetrieswe found in the current—currentperturbationsof the
WZW models can be taken as evidencethat the higher su(2)-spin Heisenberg
chainsdo in fact havefractional Lorentz-spinquasi-particles.

An interestingquestionis whetherthe fractional supersymmetrieshaveaclassi-
cal analog.We do not havea definite answerto this question.However, in the

appendixwe give an exampleof such a classical symmetry by constructinga
fractional superspace.

It is a pleasure to thank I. Alfieck, D. Altschuler, G. Felder, Z. Hlousek,
P. Mathieu, V. Pasquier, N.Yu. Reshetikhin, and J.-B. Zuber for discussions.This
work wassupportedin part by the NationalScienceFoundation.
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Note added in proof

N. Reshetikhinhasinformed us that he andBazhanovintend to publish their
work on apparently related spin chains (referred to above) in the near future.

Appendix A

CLASSICAL FRACTIONAL SUPERSYMMETRY

The formulation of supersymmetricfield theoriesis simplified by the introduc-
tion of a superspace.Remarkably,there exists a generalizationto a fractional
superspace.Wewill presentthis formalism here,deferringa discussionof its utility
to a futurepublication.For the RSGtheoriesat level L, defineM = (L + 2)/2. It
wasargued[6] that the fractional supersymmetriessatisfy the algebra

QMp+ ~Mp- (A.1)

where ~D ± are light-conecomponentsof momentum.Introducevariablesz,0, 2,0,
anda complexparameterq satisfying

OM~MO qM=i (A.2)

We definea derivativea9 such that

a~,~o=a~(o)+qU/10, (A.3)

with a9(o)= 1. This derivative has the desirable property that a9(OM)= 0. In
general

1 —q~

a9(o~)= — o”~. (A.4)

The derivativeis not theunique onesatisfyinga0(UM) = 0. Thereare in fact M — 1
of them. Herewe will only needoneother,denoted8~,satisfying

5~~0=~~(0)+q~U60. (A.5)

We find

1 —q”
= ~

It is not difficult to prove that

69a0—qö960= 0. (A.6)
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One canfind a representationof the algebra(A.1) on the fractional superspace:

M—2 1 — i+1 —1

Q = a9 + aUM
tar, a = fl q (A.7)

~ i—q

Q satisfies

QM = a~. (A.8)

A covariantderivativesatisfying

DQ-qQD=0 (A.9)

canbe constructedusingthe otherderivative

D = &,~ + qaOM ‘ar. (A.lo)

Define integralsas

fdU0~

An exampleof an actionwith the fractional supersymmetryis

S= fd2zd2oDrk15rk,

where‘P is a fractional superfieldcP(x,0, ~) = /(x) + Oi/i
1(x) + 0

2i/i
2(x) +
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