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Abstract. This is the introductory chapter of a review collection on integrability in the
context of the AdS/CFT correspondence. In the collection, we present an overview of the
achievements and the status of this subject as of the year 2010.
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Introduction

An old dream of quantum field theory (QFT) is to derive a quantitative descrip-
tion of the mass spectrum of hadronic particles and their excitations. Ideally, one
would be able to express the masses of particles such as protons and neutrons as
functions of the parameters of the theory

mp = f1(αs, α,μreg, . . .), mn = f2(αs, α,μreg, . . .), . . . .

They might be combinations of elementary functions, solutions to differential or
integral equations or something that can be evaluated effortlessly on a present-day
computer. For the energy levels of the hydrogen atom, analogous functions are
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known and they work to a high accuracy. However, it has become clear that an
elementary analytical understanding of the hadron spectrum will remain a dream.
There are many reasons why this is more than can be expected; to mention a few:
at low energies, the coupling constant αs is too large for meaningful approxima-
tions. In particular, non-perturbative contributions dominate such that the standard
loop expansion simply does not apply. Self-interactions of the chromodynamic field
lead to a non-linear and highly complex problem. Clearly, confinement obscures
the nature of fundamental particles in quantum chromodynamics (QCD) at low
energies. Of course, there are non-perturbative methods to arrive at reasonable
approximations for the spectrum, but these are typically based on effective field
theory or elaborate numerical simulations instead of elementary analytical QCD.

Spectrum of Scaling Dimensions. We shall use the above hadronic spectrum as an
analog to explain the progress in applying methods of integrability to the spectrum
of planar N =4 super Yang-Mills (SYM) theory.1 The analogy does not go all the
way, certainly not at a technical level, but it is still useful for a qualitative under-
standing of the achievements.

First of all, N = 4 SYM is a cousin of QCD and of the Standard Model of
particle physics. It is based on the same types of fundamental particles and inter-
actions—it is a renormalisable gauge field theory on four-dimensional Minkow-
ski space—but the details of the models are different. Importantly, N = 4 SYM
has a much richer set of symmetries: supersymmetry and conformal symmetry. In
particular, the latter implies that there are no massive particles whose spectrum
we might wish to compute. Nevertheless, composite particles and their mass spec-
trum have an analogue in conformal field theories: these are called local operators.
They are composed from the fundamental fields, all residing at a common point in
spacetime. As in QCD, the colour charges are balanced out making the compos-
ites gauge-invariant objects. Last but not least, there is a characteristic quantity to
replace the mass, the so-called scaling dimension. Classically, it equals the sum of
the constituent dimensions, and, like the mass, it does receive quantum corrections
(the so-called anomalous dimensions) from interactions between the constituents.

In the planar N =4 SYM model and for scaling dimensions of local operators,
the particle physicist’s dream is coming true. We know how to express the scaling
dimension DO of some local operator O as a function of the coupling constant λ

DO = f (λ).

In general, this function is given as the solution of a set of integral equa-
tions.2 What is more, in particular cases the equations have been solved numeri-

1Please note that, here and below, references to the original literature can be found in the chap-
ters of this review collection where the underlying models are introduced.

2As a matter of fact, the system of equations is not yet in a form which enables easy evalu-
ation. E.g. there are infinitely many equations for infinitely many quantities. It is however common
belief that one can, as in similar cases, reduce the system to a finite set of non-linear integral equa-
tions (NLIE).
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cally for a wide range of λ’s! These equations follow from the so-called Thermody-
namic Bethe Ansatz (TBA) or related techniques (Y-system). In a certain limit, the
equations simplify to a set of algebraic equations, the so-called asymptotic Bethe
equations. It is also becoming clear that not only the spectrum, but many other
observables can be determined in this way. Thus, it appears that planar N = 4
SYM can be solved exactly.

Integrability. With the new methods at hand, we can now compute observables
which were previously inaccessible by all practical means. By studying the observ-
ables and the solution, we hope to get novel insights, not only into this particular
model, but also into quantum gauge field theory in general. What is it that makes
planar N = 4 SYM calculable and other models not? Is its behaviour generic
or very special? Can we for instance use the solution as a starting point or first
approximation for other models? On the one hand, one may view N = 4 SYM
as a very special QFT. On the other hand, any other four-dimensional gauge the-
ory can be viewed as N = 4 SYM with some particles and interactions added or
removed: For instance, several quantities show a universal behaviour throughout
the class of four-dimensional gauge theories (e.g. highest “transcendentality” part,
tree-level gluon scattering). Moreover, this behaviour is dictated by N = 4 SYM
acting as a representative model. Thus, indeed, selected results obtained in N =4
SYM can be carried over to general gauge theories. Nevertheless, it is obvious that
we cannot make direct predictions along these lines for most observables, such as
the hadron spectrum.

The miracle which leads to the solution of planar N =4 SYM described above
is generally called integrability. Integrability is a phenomenon which is typically
confined to two-dimensional models (of Euclidean or Minkowski signature). Oddly,
here it helps in solving a four-dimensional QFT.

AdS/CFT Correspondence. A more intuitive understanding of why there is integra-
bility comes from the AdS/CFT correspondence [1–3], see also the reviews
[4–11]. The latter is a duality relation between certain pairs of models. One partner
is a conformal field theory, i.e. a QFT with exact conformal spacetime symmetry.
The other partner is a string theory where the strings propagate on a background,
which contains an Anti-de-Sitter spacetime (AdS) as a factor. The boundary of
an AdSd+1 spacetime is a conformally flat d-dimensional spacetime on which the
CFT is formulated. The AdS/CFT duality relates the string partition function with
sources φ for string vertex operators fixed to value J at the boundary of AdSd+1

to the CFTd partition function with sources J for local operators

Zstr[φ|∂AdS = J ]= ZCFT[J ].

More colloquially: for every string observable at the boundary of AdSd+1, there
is a corresponding observable in the CFTd (and vice versa) whose values are
expected to match. This is a remarkable statement, because it relates two rather
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different types of models on spacetimes of different dimensionalities. From it,
we gain novel insights into one model through established results from the other
model. For example, we can hope to learn about the long-standing problem of
quantum gravity (gravity being a fundamental part of every string theory) through
studying a more conventional QFT. However, this transfer of results requires a
leap of faith as long as the duality lacks a formal proof.

Most attempts at testing the predictions of the AdS/CFT duality have focused
on its most symmetric setting: the CFT partner is the gauge theory featured above,
N =4 SYM. The string partner is IIB superstring theory on the AdS5 × S5 back-
ground. This pair is an ideal testing ground, because the large amount of super-
symmetry leads to simplifications and even allows for exact statements about both
models. In this context, we can also understand the miraculous appearance of
integrability in planar N = 4 SYM better: by means of the AdS/CFT duality
it translates to integrability of the string worldsheet model. The latter is a two-
dimensional non-linear sigma model on a symmetric coset space for which inte-
grability is a common phenomenon. Consequently, integrability has become an
important tool to perform exact calculations in both models. Full agreement
between both sides of the duality has been observed in all considered cases. There-
fore, integrability has added substantially to the credibility of the AdS/CFT corre-
spondence.

String/Gauge Duality. Another important aspect of the AdS/CFT duality is that
in many cases, it relates a string theory to a gauge theory. In fact, the insight
regarding the similarities between these two types of models is as old as string the-
ory: it is well known that the hadron spectrum organises into so-called Regge tra-
jectories. These represent an approximate linear relationship with universal slope
between the mass squared of hadronic resonances and their spin. This is pre-
cisely what a string theory on flat space predicts; hence, string theory was for
some time considered a candidate model of the strong interactions. For various
reasons, this idea did not work out. Instead, it was found that a gauge theory,
namely QCD, provides an accurate and self-consistent description of the strong
interactions. Altogether it implies that string theory, under some conditions, can
be a useful approximation to gauge theory phenomena. A manifestation of stringy
behaviour in gauge theory is the occurrence of flux tubes of the chromodynamic
field. Flux tubes form between two quarks when they are pulled apart. To some
approximation, they can be viewed as one-dimensional objects with constant ten-
sion, i.e. strings. The AdS/CFT correspondence goes even further. It proposes that
in some cases, a gauge theory is exactly dual to a string theory. By studying those
cases, we hope to gain more insights into string/gauge duality in general, perhaps
even for QCD.

A milestone of string/gauge duality was the discovery of the planar limit [12],
see Figure 1. This is a limit for models with gauge group SU(Nc), SO(Nc) or
Sp(Nc). It consists in taking the rank of the group to infinity, Nc → ∞, while
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Figure 1. Planar and non-planar Feynman graph (top), free and interacting string worldsheet
(bottom) and Feynman graph corresponding to a patch of worldsheet (right).

keeping the rescaled gauge coupling λ= g2
YM Nc finite. In this limit, the Feynman

graphs which describe the perturbative expansion of gauge theory around λ=0 can
be classified according to their genus: graphs which can be drawn on the plane
without crossing lines are called planar. The remaining graphs with crossing lines
are suppressed. This substantially reduces the complexity of graphs from facto-
rial to exponential growth, such that the radius of convergence of the perturbative
series grows to a finite size. Moreover, the surface on which the Feynman graphs
are drawn introduces a two-dimensional structure into gauge theory: it is analo-
gous to the worldsheet of a string whose string coupling gstr is proportional to
1/Nc. Not surprisingly, integrability is confined to this planar limit where gauge
theory resembles string theory.

Parameter Space. Let us now discuss the progress due to integrability based on a
map of the parameter space of our gauge and string theory; see Figure 2. Typi-
cally, there are two relevant parameters for a gauge theory, the ’t Hooft coupling
λ= g2

YM Nc and the number of colours Nc as a measure of the rank of the gauge
group. In a string theory, we have the effective string tension T = R2/2πα′ (com-
posed from the inverse string tension α′ and the AdS5/S5 radius R) and the string
coupling gstr. The AdS/CFT correspondence relates them as follows

λ=4π2T 2,
1

Nc
= gstr

4π2T 2
.

The region of parameter space where λ is small is generally called the weak cou-
pling regime. This is where perturbative gauge theory in terms of Feynman
diagrams provides reliable results. By adding more loop orders to the series expan-
sion, one can obtain more accurate estimates towards the centre of the parame-
ter space (up to non-perturbative effects). Unfortunately, conventional methods in
combination with computer algebra only allow evaluating the first few coefficients
of the series in practice. Thus, we cannot probe the parameter space far away from
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Figure 2. Map of the parameter space of N =4 SYM or strings on AdS5 × S5.

Figure 3. Weak coupling (3, 5, 7 loops) and strong coupling (0, 1, 2 loops) expansions (left)
and numerically exact evaluation (right) of some interpolating function f (λ).

the weak coupling regime. However, Nc can be finite in practice; therefore, the
regime of perturbative gauge theory extends along the line λ=0.

The region around the point λ=∞, gstr = 0 is where perturbative string theory
applies. Here, strings are weakly coupled, but the region is nevertheless called the
strong coupling regime referring to the gauge theory parameter λ. String theory
provides a double expansion around this point. The accuracy towards finite λ is
increased by adding quantum corrections to the worldsheet sigma model (curva-
ture expansion, “worldsheet loops”). Finite-gstr corrections correspond to adding
handles to the string worldsheet (genus expansion, “string loops”). As before, both
expansions are far from trivial, and typically only the first few coefficients can be
computed in practice. Consequently, series expansions do not give reliable approx-
imations far away from the point λ=∞, gstr =0.

Here, we can see the weak/strong dilemma of the AdS/CFT duality; see also
Figure 3: the perturbative regimes of the two models do not overlap. On the one
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hand, AdS/CFT provides novel insights into both models. On the other hand,
we cannot really be sure of them until there is a general proof of the duality.
Conventional perturbative expansions are of limited use in verifying and tests had
been possible only for a few special observables (cf. [13] for example).

This is where integrability comes to help. As explained above, it provides novel
computational means in planar N =4 SYM at arbitrary coupling λ. The AdS/CFT
correspondence relates this regime to free (gstr =0) IIB superstrings on AdS5 × S5

at arbitrary tension T . It connects the regime of perturbative gauge theory with
the regime of perturbative string theory. Integrability predicts the spectrum of pla-
nar scaling dimensions for local operators as a function of λ, cf. Figure 3. In string
theory, this is dual to the energy spectrum of free string states (strings which nei-
ther break apart nor join with others). We find that integrability makes coinci-
dent predictions for both models. At weak coupling, one can compare to results
obtained by conventional perturbative means in gauge theory, and one finds agree-
ment. Analogous agreement with perturbative strings is found at strong coupling.
For intermediate coupling the spectrum apparently interpolates smoothly between
the two perturbative regimes.

Methods of integrability provide us with reliable data over the complete range
of couplings. We can investigate in practice a gauge theory at strong coupling.
There, it behaves like a weakly coupled string theory. Likewise, a string theory on
a highly curved background (equivalent to low tension) behaves like a weakly cou-
pled gauge theory. At intermediate coupling, the results are reminiscent of neither
model or of both; this is merely a matter of taste and depends crucially on whether
one’s intuition is based on classical or quantum physics. In any case, integrability
can give us valuable insights into a truly quantum gauge and/or string theory at
intermediate coupling strength.

Solving a Theory. In conclusion, we claim that integrability solves the planar sec-
tor of a particular pair of gauge and string theories. We should be clear about the
actual meaning of this statement: it certainly does not mean that the spectrum is
given by a simple formula as in the case of a harmonic oscillator, the (idealised)
hydrogen atom or strings in flat space (essentially a collection of harmonic oscil-
lators)3

EHO =ω
(

n + 1
2

)
, Ehyd =−meα

2

n2
, m2

flat =m2
0 + 1

α′
∞∑

k=−∞
nk |k|.

It would be too much to hope for such a simplistic behaviour in our models:
for instance, the one-loop corrections to scaling dimensions are typically algebraic
numbers. Therefore, the best we can expect is to find a system of algebraic equa-
tions whose solutions determine the spectrum. This is what methods of integrabil-
ity provide more or less directly. Integrability vastly reduces the complexity of the

3In fact, these systems are also integrable, but of an even simpler kind.
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spectral problem by bypassing almost all steps of standard QFT methods: there,
we first need to compute all the entries of the matrix of scaling dimensions. Each
entry requires a full-fledged computation of higher loop Feynman graphs involving
sophisticated combinatorics and demanding loop integrals. The naively evaluated
matrix contains infinities calling for proper regularisation and renormalisation. The
final step consists in diagonalising this (potentially large) matrix. This is why scal-
ing dimensions are solutions of algebraic equations. In comparison, the integrable
approach directly predicts the algebraic equations determining the scaling dimen-
sion D

f (D, λ)=0.

This is what we call a solution of the spectral problem.
A crucial benefit of integrability is that the spectral equations include the cou-

pling constant λ in the functional form. Whereas standard methods produce an
expansion whose higher loop coefficients are exponentially or even factorially hard
to compute, here we can directly work at intermediate coupling strength.

What is more, integrability gives us easy access to composite objects with a
large number of constituents. Generally, there is an enormous phase space for such
objects growing exponentially with their size. Standard methods would require
computing the complete matrix of scaling dimensions and then filter out the
desired eigenvalue. Clearly, this procedure is prohibitive for large sizes. Conversely,
the integrable approach is formulated in terms of physically meaningful quantities.
This allows us to assume a certain coherent behaviour for the constituents of the
object we are interested in, and then approach the thermodynamic limit. Conse-
quently, we obtain a set of equations for the energy of just this object. Moreover,
the thermodynamic limit is typically much simpler than the finite-size equations.
The size of the object can be viewed as a quantum parameter, where infinite versus
finite size corresponds to classical versus quantum physics. In fact, in many cases
it does map to classical versus quantum strings! In Figure 4, we present a phase
space for local operators in planar N =4 SYM. On it, we indicate the respective
integrability methods to be described in detail in the overview sections and in the
chapters.

As already mentioned, a strength of the integrable system approach is that
objects are often represented through their physical parameters. This is not just an
appealing feature, but also a reason for the efficiency: The framework of quantum
mechanics and QFT is heavily based on equivalence classes. Explicit calculations
usually work with representatives. Choosing a particular representative in a class
introduces further auxiliary degrees of freedom into the system. These degrees of
freedom are carried along the intermediate steps of the calculation, and it is rea-
sonable to expect them to be a source of added difficulty, because there is no phys-
ical principle to constrain their contributions. In particular, they are the habitat of
the notorious infinities of QFT. At the end of the day, all of their contributions
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Figure 4. Phase diagram of local operators in planar N = 4 SYM mapped with respect to
coupling λ versus “size” L. Also indicated are the integrability methods that describe the spec-
trum accurately.

miraculously4 vanish into thin air. Hence, a substantial amount of efforts typically
go into calculating contributions, which one is actually not interested in. Con-
versely, one may view integrable methods as working directly in terms of the phys-
ical equivalence classes instead of their representatives. The observables are then
computed without intermediate steps or complications. The fact that such a short-
cut exists for some models is a true miracle; it is called integrability.

So far, we have discussed solving the spectrum of our planar model(s). A large
amount of evidence has now accumulated that this is indeed possible, and, more
importantly, we understand how to do it in practice. Solving the theory, however,
requires much more; we should be able to compute all of its observables. For a
gauge theory, they include not only the spectrum of scaling dimensions, but also
correlation functions, scattering amplitudes, expectation values of Wilson loops,
surface operators and other extended objects, as well as combinations of these
(loops with insertions, form factors, . . .), if not more. For several of these, in par-
ticular for scattering amplitudes, it is becoming clear that integrability provides
tools to substantially simplify their computation. Hence, it is plausible to expect
that the planar limit can be solved.

Can we also solve the models away from the planar limit? There are many indi-
cations that integrability breaks down for finite number of colours Nc. Neverthe-
less, this alone does not imply that we should become dispirited. Integrability may
still prove useful, not in the sense of an exact solution, but as a means to perform

4Of course, the miracle is consistency of the model paired with failing to make mistakes in the
calculation (often used as a convenient cross check of the result).
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an expansion in terms of genus, i.e. in powers of 1/Nc ∼ gstr. This might give us
a new handle to approach the centre of parameter space in Figure 2 coming from
below. The centre will, with all due optimism, most likely remain a tough nut to
crack.

In conclusion, methods of integrability have already brought and will continue
to bring novel insights into the gauge and string models. Having many concrete
results at hand helps in particular to understand their duality better. In particular,
we can confirm and complete the AdS/CFT dictionary, which relates objects and
observables between the two models.

Integrability as a Symmetry. Above, we have argued that the success of integrability
is based on the strict reduction to the physical degrees of freedom. Another impor-
tant point of view is that integrability is a hidden symmetry. Symmetries have
always been a key towards a better understanding in particle physics and QFT.
Here, the hidden symmetry is in fact so powerful that it not only relates selected
quantities to others, but, in some sense, anything to everything else. The extended
symmetry thus predicts the outcome of every measurement, at least in principle.
Conventionally, one would expect the resulting model to be trivial, just like a har-
monic oscillator, but there are important interesting and highly non-trivial cases.

Integrability finds a natural mathematical implementation in the field of quan-
tum algebra. More concretely, the type of quantum integrable system that we
encounter is usually formulated in terms of deformed universal enveloping algebras
of affine Lie algebras. The theory of such quasi-triangular Hopf algebras is in gen-
eral highly developed. It provides the objects and their relations for the solution of
the physical system. Curiously, our gauge/string theory integrable model appears
to be based on some unconventional or exceptional superalgebra, which largely
remains to be understood. It is not even clear whether quasi-triangular Hopf alge-
bras are a sufficient framework for a complete mathematical implementation of the
system.

Relations to Other Subjects. An aspect which makes the topic of this review a par-
ticularly attractive one to work on is its relation to diverse subjects of theoreti-
cal physics and mathematics. Let us collect a few here, including those mentioned
above, together with references to the chapters of this review where the relations
are discussed in more detail:

• Most obviously, the topic of the review itself belongs to four-dimensional QFT,
more specifically, gauge theory and/or CFT, and also to string theory on curved
backgrounds.

• Recalling the discussion from a few lines above, the mathematical framework
for the kind of integrable models that we encounter is quantum algebra, see
Chapter VI.2.

• As mentioned earlier, string theory always contains a self-consistent formula-
tion of quantum gravity. By gaining a deeper understanding of string theory
models, we hope to learn more about quantum gravity as such. Furthermore,
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by means of the string-related Kawai–Lewellen–Tye [14] and Bern–Carrasco–
Johansson relations [15,16], there is a connection between scattering amplitudes
in N = 4 SYM and N = 8 supergravity, which stands a chance of being free
of perturbative divergencies.5 These aspects are not part of the review. In fact,
it would be highly desirable to explore the use of integrability results in this
context.

• Prior to the discoveries related to the AdS/CFT correspondence, integrability
in four-dimensional gauge theories was already observed in the context of high-
energy scattering and the BFKL equations, and for deep inelastic scattering and
the DGLAP equations, see Chapter IV.4 and [17]. Note that the twist states
discussed in Chapter III.4 play a prominent role in deep inelastic scattering.

• There are also rather distinct applications of integrability in supersymmetric
gauge theories. There is the famous Seiberg–Witten solution [18,19] for the BPS
masses in D =4, N =2 gauge theories. Furthermore, supersymmetric vacua in
D = 2, N = 4 gauge theories with matter can be described by Bethe ansätze
[20,21]. It remains to be seen whether there are connections to the subject of
the present review.

• There are further links to general four-dimensional gauge theories. On a quali-
tative level, we might hope to learn about QCD strings from novel results in
the AdS/CFT correspondence at finite coupling. On a practical level, the lead-
ing-order results in N =4 SYM can be carried over to general gauge theories
essentially because N =4 SYM contains all types of particles and interactions
allowed in a renormalisable QFT. Chapter IV.4 is most closely related to this
topic.

• Along the same lines, the BFKL dynamics in leading logarithmic approxima-
tion is universal to all four-dimensional gauge theories. The analytic expres-
sions derived in N = 4 SYM may allow us to clarify the nature of the most
interesting Regge singularity, the pomeron (see [22–24]), which is the most inter-
esting object for perturbative QCD and for its applications to particle collider
physics.6

• A certain class of composite states, but also loop integrals in QFT, often involve
generalised harmonic sums, generalised polylogarithms and multiple zeta val-
ues. The exploration of such special functions is an active topic of mathematics.
See Chapters I.2, III.4 and V.2.

• Local operators of the gauge theory are equivalent to states of a quantum spin
chain. Spin chain models come to use in connection with magnetic properties in
solid state physics. Also in gauge theory, ferromagnetic and anti-ferromagnetic
states play an important role; see Chapters I.1 and III.4.

• More elaborate spin chains—such as the one-dimensional Hubbard model (cf.
[25])—are considered in connection to electron transport. Curiously, this rather

5One should point out that these relations are essentially non-planar.
6We thank L. Lipatov for pointing out this application.
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exceptional Hubbard chain makes an appearance in the gauge theory context,
in at least two distinct ways; see Chapters I.3 and III.2.

• There are many more avenues left to be explored.

Outline

The review collection consists of the above introduction and 23 chapters grouped
into six major subjects. Each chapter reviews a particular topic in a self-contained
manner. The following overview gives a brief summary of each part and each
chapter, and is meant to tie the whole collection together. It can be understood
as an extensive table of contents.

Where possible, we have put the chapters into a natural and meaningful order
with regards to content. A chapter builds upon insights and results presented in
the earlier chapters and begins roughly where the previous one ended. In many
cases, this reflects the historical developments, but we have tried to pull loops
straight. Our aim was to prepare a pedagogical and generally accessible introduc-
tion to the subject of AdS/CFT integrability rather than a historically accurate
account.

While the topics were fixed, the design and presentation of each chapter was
largely the responsibility of its authors. The only guideline was to discuss an
instructive example in detail while presenting the majority of results more briefly.
Furthermore, the chapters give a guide to the literature relevant to the topic where
more details can be found. Open problems are also discussed in the chapters. Note
that we did not enforce uniform conventions for naming, use of alphabets, normal-
isations and so on. This merely reflects a reality of the literature. However, each
chapter is meant to be self-consistent.

Before we begin with the overview, we would like to point out existing reviews
on AdS/CFT integrability and related subjects, which cover specific aspects in
more detail. We can recommend several reviews dedicated to the subject [26–33].
Also, a number of PhD theses are available which at least contain a general review
as the introduction [34–42]. It is also worthwhile to read some of the very brief
accounts of the subject in the form of news items [43,44]. Last, but not least, we
would like to refer the reader to prefaces of special issues dedicated to AdS/CFT
integrability [45,46] and closely related subjects [47,48].

Overview

The chapters are grouped into six parts representing the major topics and activities
of this subject; see Figure 5. In the first two, Parts I and II, we start by outlining
the perturbative gauge and string theory setup. Here, we focus on down-to-earth
QFT calculations, which yield the solid foundation in spectral data of local oper-
ators. In the following Part III, we review the construction of the spectrum by
integrable methods. More than merely reproducing the previously obtained data,
this goes far beyond what could possibly be computed by conventional methods:
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Figure 5. An overview of the chapters and (some of) their connections.

it can apparently predict the exact spectrum. The next Part IV summarises appli-
cations of these methods to similar problems, beyond the spectrum, beyond pla-
narity, beyond N = 4 SYM or strings on AdS5 × S5. Among these avenues is the
application of integrability to scattering amplitudes; as this topic has grown into a
larger subject, we shall devote Part V to it. The final Part VI reviews classical and
quantum algebraic aspects of the models and of integrability.

I. N = 4 Super Yang–Mills Theory

This part deals with the maximally supersymmetric
Yang–Mills (N =4 SYM) theory in four spacetime
dimensions. This model is a straightforward QFT.
It uses the same types of particles and interactions
that come to play in the Standard Model of par-
ticle physics. However, the particle spectrum and
the interactions are delicately balanced granting the
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model a host of unusual and unexpected features. The best known of these is exact
(super)conformal symmetry at the quantum level. A far less apparent feature is
what this review collection is all about: integrability.

In this part, we focus on the perturbative field theory, typically expressed through
Feynman diagrams. The calculations are honest and reliable, but they become
tough as soon as one goes to higher loop orders. Integrability will only be dis-
cussed as far as it directly concerns the gauge theory setup, i.e. in the sense of con-
served operators acting on a spin chain. The full power of integrability will show
up only in Part III.

I.1. Spin Chains in N = 4 SYM

This chapter [49] introduces the gauge theory and its
local operators, and outlines how to compute the spec-
trum of their planar one-loop anomalous dimensions.
It is explained how to map one-to-one local operators
to states of a certain quantum spin chain. The oper-
ator which measures the planar, one-loop anomalous
dimensions corresponds to the spin chain Hamiltonian in this picture. Importantly,
this Hamiltonian is of the integrable kind, and the planar model can be viewed
as a generalisation of the Heisenberg spin chain. This implies that its spectrum is
solved efficiently by the corresponding Bethe ansatz. E.g. a set of one-loop planar
anomalous dimensions δD is encoded in the solutions of the following set of Bethe
equations for the variables uk ∈C (k =1, . . . ,M)

(
uk + i

2

uk − i
2

)L

=
M∏

j=1
j �=k

uk −u j + i

uk −u j − i
, 1=

M∏
j=1

u j + i
2

u j − i
2

, δD = λ

8π2

M∑
j=1

1

u2
j + 1

4

.

Finally, the chapter presents applications of the Bethe ansatz to sample problems.

I.2. The Spectrum from Perturbative Gauge Theory

This chapter [50] reviews the computation of the spec-
trum of anomalous dimensions at higher loops in per-
turbative gauge theory. The calculation in terms of
Feynman diagrams is firmly established, but just a
handful orders takes you to the limit of what is gen-
erally possible. Computer algebra and superspace tech-
niques push the limit by a few orders.

In our case, the results provide a valuable set of irrefutable data which the inte-
grable model approach must be able to reproduce to show its viability. This com-
prises not only explicit energy eigenvalues, but also crucial data for the integrable
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system, such as the magnon dispersion relation and scattering matrix. Importantly,
also the leading finite-size terms are accessible in this approach, e.g. the four-loop
anomalous dimension to the simplest non-trivial local operator reads (cf. the above
Bethe equation with L =4,M =2)

δD = 3λ
4π2

− 3λ2

16π4
+ 21λ3

256π6
− (78−18ζ(3)+45ζ(5))λ4

2,048π8
+· · ·

I.3. Long-Range Spin Chains

This chapter [51] reviews spin chain Hamiltonians
originating in planar gauge theory at higher loops.
The one-loop Hamiltonian describes interactions
between two neighbouring spins. At higher loops, the
Hamiltonian is deformed by interactions between sev-
eral neighbouring spins, e.g.

H =
L∑

j=1

(
λ

8π2
(1− Pj, j+1)+ λ2

128π4
(−3+4Pj, j+1 − Pj, j+2)+· · ·

)
.

Moreover, the Hamiltonian can dynamically add or remove spin sites! While inte-
grable nearest-neighbour Hamiltonians have been studied in detail for a long
time, a better general understanding of long-range deformations was developed
only recently. Curiously, several well-known integrable spin chain models make
an appearance in this context, in particular, the Haldane–Shastry, Inozemtsev and
Hubbard models.

II. IIB Superstrings on AdS5×S5

This part concerns the IIB string theory on the
maximally supersymmetric AdS5 × S5 background.
The string worldsheet model is a two-dimensional
UV-finite QFT. It is of the non-linear sigma model
kind with target space AdS5 × S5 and further pos-
sesses worldsheet diffeomorphisms. Also, this model
has a number of exceptional features, such as kappa
symmetry, which make it a viable string theory on a stable background. Some-
what less surprising than in gauge theory, this model is also integrable, a property
shared by many two-dimensional sigma models on coset spaces.

We outline how to extract spectral data from classical string solutions with
quantum corrections. There are many complications, such as non-linearity of the
classical equations of motion, lack of manifest supersymmetry and presence of
constraints. Again, integrability will help tremendously; here, we focus on string-
specific aspects and leave the more general applications to Part III.
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II.1. Classical AdS5×S5 String Solutions

This chapter [52] introduces the Green–Schwarz string
on the curved spacetime AdS5 × S5. For the classi-
cal spectrum, only the bosonic fields are relevant. To
find exact solutions of the non-linear equations of
motions, one typically makes an ansatz for the shape
of the string. Taking inspiration from spinning strings
in flat space, one can for instance assume a geodesic rod spinning around some
orthogonal axes. The equations of motion together with the Virasoro constraints
dictate the local evolution, while boundary conditions quantise the string modes.
Next, the target space isometries give rise to conserved charges, such as angular
momenta and energy. These can be expressed in terms of the parameters of the
string solution. E.g., a particular class of spinning strings on AdS3 × S1 ⊂AdS5 ×
S5 obeys the following relation (K,E are elliptic integrals)

S2

(K(m)−E(m))2
− J 2

K(m)2
=16n2T 2 (1−m),

J 2

K(m)2
− E2

E(m)2
=16n2T 2 m.

Such relations can be used to express the energy E as a function of the angular
momenta J, S, the string modes n and the string tension T .7

II.2. Quantum Strings in AdS5×S5

This chapter [53] continues with semiclassical quan-
tisation of strings. Here, one distinguishes between
point-like and extended strings.

Quantisation around point-like strings is the direct
analogue of what is commonly done in flat space. The
various modes of the string can be excited in quan-
tised amounts, and the string spectrum takes the form

E − J =
M∑

k=1

Nk

√
1+λn2

k/J 2 +· · · ,
M∑

k=1

Nknk =0.

The main difference with flat space is that the modes interact, adding non-trivial
corrections to the spectrum. These corrections can be computed in terms of a scat-
tering problem on the worldsheet.

7Note that complicated classes of solutions will require further internal parameters in addition
to m.
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Quantisation around extended string solutions is far less trivial. The spectrum
of fluctuations now crucially depends on the classical solution. Another effect is
that the energy of the classical string receives quantum corrections due to vacuum
energies of the string modes.

II.3. Sigma Model, Gauge Fixing

Spheres and anti-de-Sitter spacetimes are symmet-
ric cosets. This chapter [54] presents the formulation
of the string worldsheet as a two-dimensional coset
space sigma model of the target space isometry super-
group. In particular, integrability finds a simple for-
mulation in a family of flat connections A(z) on the
worldsheet and its holonomy M(z) around the closed worldsheet

d A(z)+ A(z)∧ A(z)=0, M(z)=P exp
∮

A(z).

Series expansion of M(z) in the spectral parameter z leads to an infinite tower of
charges extending the isometries to an infinite-dimensional algebra.

Proper treatment of symmetries and integrability towards a canonical quantisa-
tion requires a Hamiltonian formulation. Here, the major complications are the
presence of first and second class constraints due to worldsheet diffeomorphisms
and kappa symmetry. Finally, one encounters notorious ambiguities in deriving the
algebra of conserved charges.

II.4. The Spectral Curve

This chapter [55] on strings, the flat connection is
applied to the construction of the (semi)classical string
spectrum. The eigenvalues eipk (z) of the monodromy
M(z) are integrals of motion. As functions of com-
plex z, they define a spectral curve for each classical
solution. Instead of studying explicit classical solu-
tions, we can now study abstract spectral curves. Besides containing all the spectral
information, they offer a neat physical picture. String modes correspond to han-
dles of the Riemann surface, and each handle has two associated moduli: the mode
number nk and an amplitude αk . They can be extracted easily as periods of the
curve

∮
Ak

dp =0,
1

2π

∮
Bk

dp =nk,

√
λ

4π2i

∮
Ak

1+ z4

1− z4
dp = Nk .
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Note that quantisation replaces the amplitude by an integer excitation number
Nk , thus providing access to the semiclassical spectrum of fluctuation modes.

III. Solving the AdS/CFT Spectrum

Armed with some basic knowledge of the relevant
structures in gauge and string theory (as well as an
unconditional belief in the applicability of integra-
ble structures to this problem), we aim to solve the
planar spectrum in this part.

The starting point is that in both models, there
is a one-dimensional space (spin chain, string) on
which some particles (magnons, excitations) can propagate. By virtue of symme-
try and integrability, one can derive how they scatter, at all couplings and in all
directions. Taking periodicity into account properly, one arrives at a complete and
exact description of the spectrum. For certain states this program was carried out,
and all the results are in complete agreement with explicit calculations in pertur-
bative gauge or string theory (as far as they are available). Yet, the results from
the integrable system approach go far beyond what is otherwise possible in QFT:
they provide a window to finite coupling λ!

There are several proposals of how to formulate these equations—through an
algebraic system or through integral equations. However, it is commonly believed
that a reasonably simple and generally usable form for such equations has not yet
been found (let alone proved).

III.1. Bethe Ansätze and the R-matrix formalism

As a warm-up exercise and to gather experience, this
chapter [56] solves one of the oldest quantum mechan-
ical systems—the Heisenberg spin chain. This is done
along the lines of Bethe’s original work, using a fac-
torised magnon scattering picture, but also in several
variants of the Bethe ansatz. This introduces us to
ubiquitous concepts of integrable systems such as R-matrices, transfer matrices and
the famous Yang–Baxter equation

R12 R13 R23 = R23 R13 R12.

The chapter ends by sketching a promising novel method for constructing the
so-called Baxter Q-operators, allowing to surpass the Bethe ansatz technique.
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III.2. Exact Worldsheet S-Matrix

Even though little is known about gauge or string
theory at finite coupling, the magnon scattering pic-
tures and symmetries qualitatively agree for weak and
strong coupling. Under the assumption that they
remain valid at intermediate couplings, this chapter
[57] describes how to make use of symmetry to deter-
mine all the relevant quantities: Both, the magnon dispersion relation

e(p)=
√

1+ λ

π2
sin2

(
1
2

p

)

and the 16-flavour scattering matrix are almost completely determined through
representation theory of an extended psu(2|2) superalgebra. Integrability then
ensures factorised scattering and determines the spectrum on sufficiently long
chains or strings through the asymptotic Bethe equations.

III.3. The Dressing Factor

Symmetry alone cannot predict an overall phase factor
of the scattering matrix, which is nevertheless crucial
for the spectrum. Several other desirable properties of
factorised scattering systems, such as unitarity, crossing
and fusion, constrain its form

S0
12S0

12̄
= f12.

This chapter [58] presents this crossing equation and its solution–the so-called
dressing phase. It has a host of interesting analytic properties relating to the phys-
ics of the model under discussion.

III.4. Twist States and the Cusp Anomalous Dimension

The asymptotic Bethe equations predict the spectrum
up to finite-size corrections. In this chapter, [59] we
apply them to the interesting class of twist states.
These are ideally suited for testing purposes, because a
lot of solid spectral data are known from perturbative
gauge and string theory. They also have an interesting
dependence on their spin j , in terms of generalised harmonic sums of fixed degree.

Importantly, in the large spin limit, finite-size corrections turn out to be sup-
pressed. The Bethe equations reduce to an integral equation to predict the exact
cusp dimension (and generalisations). The latter turns out to interpolate smoothly
between weak and strong coupling in full agreement with perturbative data
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Dcusp = λ

2π2
− λ2

96π2
+ 11λ3

23,040π2
+· · ·=

√
λ

π
− 3 log 2

π
− β(2)

π
√
λ

+· · · .

III.5. Lüscher Corrections

For generic states, however, finite-size corrections are
required to get agreement with gauge and string the-
ory. This chapter [60] explains how to apply Lüscher
terms to determine these: on a closed worldsheet there
are virtual particles propagating in the spatial direc-
tion in non-trivial loops around the string. When they
interact with physical excitations, they give rise to non-trivial energy shifts (q j and
pk are virtual and real particle momenta, respectively)

δE =−
∑

j

∫
dq j

2π
e−Lẽ j (q j ) STr j

∏
k

S jk(q j , pk).

III.6. Thermodynamic Bethe Ansatz

Although finite-size corrections appear under control,
it is clearly desirable to find equations to determine the
exact spectrum at one go. This chapter [61] describes
the thermodynamic Bethe ansatz approach based
on the following idea. Consider the string worldsheet
at finite temperature with Wick rotated time. It has the
topology of a torus of radius R and time period L. We are primarily interested in
the zero temperature limit where time is decompactified. Now the torus partition
function can be evaluated in the mirror theory where the periods are exchanged

Z(R, L)= Z̃(L , R).

Then, instead of time, we can decompactify the radius. Conveniently, the asymp-
totic Bethe equations become exact, and eventually predict the finite-size spectrum.

III.7. Hirota Dynamics for Quantum Integrability

This chapter [62] presents a equivalent proposal for the
finite-size spectrum based on the conserved charges of
an integrable model. The latter are typically packaged
into transfer matrix eigenvalues T (u). These exist in
various instances which obey intricate relations, such
as the discrete Hirota equation (also known as the
Y-system for equivalent quantities Ya,s(u))
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Ta,s

(
u + i

2

)
Ta,s

(
u − i

2

)
= Ta+1,s(u)Ta−1,s(u)+ Ta,s+1(u)Ta,s−1(u).

Similarly to Chapter II.4, one can start from these equations, subject to suitable
boundary conditions, and predict the spectrum at finite coupling.

IV. Further Applications of Integrability

For the sake of a clear presentation, the previous
parts focused on one particular application of inte-
grability in AdS/CFT: solving the exact planar spec-
trum of N = 4 supersymmetric Yang–Mills theory
or equivalently of IIB string theory on AdS5 × S5.
While this topic has been at the centre of attention,
many investigations have dealt with extending the
applications of integrability to other observables beyond the planar spectrum and
to more general models. This part and the following try to give an overview of
these developments.

IV.1. Aspects of Non-Planarity

Integrability predicts the planar spectrum accurately
and with minimum effort. It would be desirable to
extend the applications of integrability to non-planar
corrections because, e.g., in QCD Nc = 3 rather than
Nc =∞. For the spectrum, these are interactions where
the spin chain or the string splits up and recombines

H = H0 + 1
Nc
(H+ + H−)+· · · .

They result in a string worldsheet of higher genus or with more than two punc-
tures.

This chapter [63] reviews the available results on higher-genus corrections, higher-
point functions as well as supersymmetric Wilson loops in the AdS/CFT context.
It is shown that most of the basic constructions of integrability do not work in the
non-planar setup.

IV.2. Deformations, Orbifolds and Open Boundaries

There exist many deformations of N = 4 SYM, which
preserve some or the other property, e.g. by deforming
the (N =1) superpotential∫

d4x d4θ Tr (eiβXY Z − e−iβ ZY X).

It is natural to find out under which conditions integrability can survive. This
chapter [64] reviews such superconformal deformations of N =4 SYM and shows
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how the methods of integrability can be adjusted to these cases. It turns out that
these merely deform the boundary conditions of the integrable model by introduc-
ing additional phases into the Bethe equations (in the spin chain context this has
a similar effect as turning on a magnetic field). Different boundary conditions can
also arise from looking at other corners of the spectrum or at different observ-
ables; this is another topic of the present chapter.

IV.3. N = 6 Chern-Simons and Strings on AdS4×C P3

Recently, a QFT in three dimensions was discovered
which behaves in many respects like N = 4 SYM—
N =6 supersymmetric Chern–Simons-matter theory

S = k

4π

∫
Tr

(
A ∧d A + 2

3
A ∧ A ∧ A +· · ·

)
.

It is exactly superconformal at the quantum level, and
there is an AdS/CFT dual string theory—IIA superstrings on the AdS4 × C P3

background. Importantly, there exists a large-Nc limit, in which the model becomes
integrable. This chapter [65] reviews integrability in this AdS4/CFT3 correspon-
dence. While being largely analogous to the constructions in the previous parts,
there are several noteworthy differences in the application of integrable methods:
for instance, here the spin representation alternates between the sites.

IV.4. Integrability in QCD and N <4 SYM

Similar integrable structures were known to exist in
more general gauge theories long before the exploita-
tion of integrability in N =4 SYM. This chapter [66]
introduces evolution equations for high-energy scatter-
ing (BFKL) and scaling of quasi-partonic operators in
connection to deep inelastic scattering (DGLAP). To
some extent, these take the form of integrable Hamiltonians with sl(2|N ) symme-
try (J12 is the two-particle spin operator and � is the digamma function)

H12 ��(J12)−�(1).

Its eigenvalues determine the scaling of certain hadronic structure functions and
control the energy dependence of scattering amplitudes in the high-energy (Regge)
limit.
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V. Integrability for Scattering Amplitudes

The most conservative application of quantum field
theories is to compute scattering cross sections (to
be compared to particle scattering experiments).
With old blades sharpened and new ones developed,
the charted territory of tree and loop scattering
amplitudes in N = 4 SYM has increased dramat-
ically; see e.g. the recent reviews [67–71] and the
special issue [72]. It was soon noticed that something special was going on in the
planar limit, which makes amplitudes much simpler than originally thought. It
does not take much imagination to conjecture a connection to integrability. This
part reviews scattering amplitudes and what integrability implies in this context.
This topic is under active investigation and many advances have been and are
being made, but a lot remains to be understood. Here, one can expect that integra-
bility will enable a similarly simple solution as in the case of the planar spectrum.

V.1. Scattering Amplitudes–A Brief Introduction

This chapter [73] gives an introduction into the topic
of scattering amplitudes in N = 4 SYM. First of
all, the spinor-helicity formalism and colour-ordering
scheme strips the combinatorial structure and leaves
plain functions. For instance, an essential part of an
n-particle amplitude simply reads (〈k j〉 is a Lorentz-
invariant constructed from the momenta of particles k and j)

AMHV
n = δ4(P) δ8(Q)

〈12〉〈23〉 · · · 〈n1〉 .
The S-matrix displays a host of useful analyticity properties related to unitarity.
These can be used to reconstruct tree and loop amplitudes from scratch, which
is typically far more efficient than using Feynman diagrams following from the
Lagrangian description.

V.2. Dual Superconformal Symmetry

This chapter [74] reviews simplifications found in pla-
nar scattering. It turns out that the underlying scalar
integrals are of a special form, which hints at confor-
mal symmetry in a dual space. Indeed, the amplitudes
obey a dual superconformal symmetry in addition to
the conventional one. The two sets of conformal sym-
metries close onto an infinite-dimensional algebra, which is at the heart of integra-
bility — the Yangian.
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This symmetry helps to determine all (tree) amplitudes, by means of recursion or
through a Grassmannian integral (C is a k ×n matrix, M j are its k × k minors of
consecutive columns, and Z are 4|4 twistors encoding the momenta of the n legs)

Atree
n,k (Z)=

∫
dk(n−k)C δk(4|4)(C Z)

M1 · · · Mn
.

V.3. Scattering Amplitudes at Strong Coupling

This chapter [75] discusses the string dual of scatter-
ing amplitudes. Here, it makes sense to transform par-
ticle momenta to distances by means of a T-duality. At
strong coupling, an amplitude is then dominated by the
minimal area of a string worldsheet ending on a light-
like polygonal contour on the AdS5 boundary (the pre-
vious Chapter V.2 provides evidence in favour of a general relation between ampli-
tudes and light-like polygonal Wilson loops). Such minimal areas can be computed
efficiently by integrable means bypassing the determination of the complicated
shape of the worldsheet (cf. Chapter III.5)

Areg =
∑

k

∫
dθ mk cosh θ

2π
log(1+Yk(θ)).

VI. Algebraic Aspects of Integrability

Integrability can be viewed as a symmetry. In most
cases it enhances an obvious, finite-dimensional sym-
metry of a physical system to a hidden, infinite-
dimensional algebra. The extended symmetry then
imposes a large number of constraints onto the sys-
tem which determine the dynamics (almost) com-
pletely, but without making it trivial. Many of the
properties and methods that come to use in integrable systems find a mathemat-
ical formulation in terms of quantum algebra. Often, this does not help immedi-
ately in computing particular physical observables, one of the main objectives of
the previous parts. Rather, it can give a deeper understanding of how the model’s
integrability works, with a view to finding rigorous proofs for the applicability of
the (well-tested) proposals.

This final part of the review presents the symmetries relevant to our gauge and
string theory problem. These are the Lie supergroup PSU(2,2|4) as the obvious
symmetry and its Yangian algebra to encode integrability.
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VI.1. Superconformal Algebra

The Lie superalgebra psu(2,2|4) is generated by 8 × 8
supermatrices (in 2|4|2 grading)

J =

⎛
⎜⎜⎝

L −i Q P

S R Q̄

K −i S̄ L̄

⎞
⎟⎟⎠ ,

subject to suitable constraints, projections and hermiticity conditions. It serves as
the spacetime superconformal symmetry in gauge theory as well as the target space
isometries of the dual string theory.

This chapter [76] summarises some well-known facts and results for this algebra.
It also explains how the algebra applies to the gauge and string theory setup. The
chapter is not so much related to integrability itself, but can rather be understood
as an appendix to many of the other chapters when it comes to the basics of sym-
metry.

VI.2. Yangian Algebra

In physics, one is used to the concept of locally and
homogeneously acting symmetries. This chapter [77]
introduces the Yangian algebra whose non-local action
is encoded by the coproduct

�(Y A)=Y A ⊗1+1⊗Y A + f A
BC J B ⊗ J C .

For instance, such a non-local action permits a scattering matrix which is fully
determined by the algebra while still being non-trivial. The scattering matrix
becomes a natural intertwining object of the Yangian, its R-matrix. It enjoys a
host of useful properties which eventually make the physical system tractable.
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