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Abstract
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is 
a deformation of the O(3) sigma model preserving integrability. The target 
space is deformed from the sphere to ‘sausage’ shape by a deformation 
parameter ν. This model is defined by a factorizable S-matrix which is 
obtained by deforming that of the O(3) sigma model by a parameter λ. Clues 
for the deformed sigma model are provided by various UV and IR information 
through the thermodynamic Bethe ansatz (TBA) analysis based on the 
S-matrix. Application of TBA to the sausage model is, however, limited to 
the case of 1/λ integer where the coupled integral equations can be truncated 
to a finite number. In this paper, we propose a finite set of nonlinear integral 
equations (NLIEs), which are applicable to generic value of λ. Our derivation 
is based on T − Q relations extracted from the truncated TBA equations. For a 
consistency check, we compute next-leading order corrections of the vacuum 
energy and extract the S-matrix information in the IR limit. We also solved the 
NLIE both analytically and numerically in the UV limit to get the effective 
central charge and compared with that of the zero-mode dynamics to obtain 
exact relation between ν and λ.

Keywords: non-linear sigma model, S-matrix, non-linear integral equation, 
sausage model
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1.  Introduction

Two-dimensional nonlinear sigma (NLS) models form an interesting class of quantum field 
theories as they may describe string theories on nontrivial target manifolds, continuum spin 
systems, quantum gravity and black holes. Even more interesting subclasses of NLS models 
are those which can be exactly solvable. These provide valuable information on non-perturba-
tive aspects of quantum fields. One of the many recent applications of these models appears 
in the AdS/CFT correspondence [1] which is largely based on the integrability discovered in 
the target space [2]. Thanks to integrability, the S-matrix is factorizable and can be applied to 
compute finite-size effects of the NLS models. Thermodynamic Bethe ansatz (TBA), which 
is directly derived from the S-matrix, is a most commonly used method for this purpose [3]. 
While it is an efficient tool for some class of integrable models, the TBA gets complicated 
for the NLS models which typically introduce an infinite set of coupled integral equations. 
To overcome this technical problem, nonlinear integral equations (NLIEs) are constructed for 
the finite-size effects [4–6] which replace the infinite number of TBA equations with only a 
finite one. There is a disadvantage, however, that the connections between the NLIEs and the 
S-matrix of the orginal model are more involved. This can be overcome if the NLIEs can be 
derived from the TBAs. These derivations are available for various 2d NLS models [7] and for 
the AdS/CFT [8, 9].

Another direction of developments in the study of the NLS models is to extend the target 
spaces which preserve integrability. The sausage model is one of the earliest attempts in this 
direction [10]. Fateev, Onofri, and Zamolodchikov have considered a deformation of the O(3) 
NLS model which can still be integrable. The target space is deformed from the sphere to 
‘sausage’ shape by a deformation parameter ν. Assuming the integrability rather than proving 
it, the authors have proposed exact S-matrix by deforming that of O(3) model with a param
eter λ and have computed various physical quantities, such as finite-size effects. This kind 
of generalization has been also studied in the AdS/CFT recently under the names of γ-, η-, and 
κ-deformations [11–14] whose S-matrices on the worldsheet are deformed by such param
eters [15] while preserving integrability.

Introducing the deformation parameter λ raises various technical issues. A new set of 
bound-states can appear for certain domain of λ which complicates the TBA equations fur-
ther. Analytic relationship between the λ of the S-matrix and target space deformation ν should 
be necessary for the complete understanding. While particle spectrum of the sausage model 
remains simple in the domain of 0 � λ < 1/2, the TBA has been derived only for integer val-
ues of 1/λ [10]. The main goal of this paper is to derive NLIE equations applicable to generic 
values of λ, but still limited to the above domain. Our derivation is based on the manipulation 
of the TBA system, or equivalently its functional equation  form, the so-called ‘Y-system’ 
along with analytic properties in the line of direct derivation of NLIEs from the TBA [7]. 
Since the TBA has been constructed for the integer values of 1/λ, an analytic continuation to 
non-integer 1/λ should be assumed at certain step. The validity of this assumption is checked 
a posteriori by deriving S-matrix elements from the NLIE in the large volume limit. In the 
opposite short distance or UV limit, we can solve the NLIE equations either analytically or 
numerically and find an exact relation between λ and ν, which turns out to be different from 
the one conjectured in the original paper [10].

This paper is organized as follows. In section 2 we summarize the relevant contents of the 
sausage model in [10]. Section 3 contains our main results. We derive the NLIE equations and 
analyze both IR and UV limits. We conclude this paper in section 4 with brief summary and 
possible open problems. We explain the details of analytic UV computations in appendix.

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005
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2.  Sausage sigma model as factorized S-matrix theory

The O(3) NLS model is a prototype of an integrable model with action

AO(3) =
1

2g

∫ 3∑
a=1

(∂µna)
2d2x + iϑT� (2.1)

where T is a Wess–Zumino topological term. The three fields na are an O(3) unit vector ∑
a n2

a = 1. This model, denoted by SSM(ϑ)
0  [10], is integrable for ϑ = 0,π. Although the two 

cases show the same UV behaviour, they are very different in IR. The particle spectrum of 

SSM(0)
0  is a massive triplet of O(3), whose S-matrix is O(3)-invariant [16],

S(θ) = S0(θ)P0 + S1(θ)P1 + S2(θ)P2� (2.2)

S0(θ) =
θ + 2iπ
θ − 2iπ

, S1(θ) =
(θ − iπ)(θ + 2iπ)
(θ + iπ)(θ − 2iπ)

, S2(θ) =
θ − iπ
θ + iπ

,� (2.3)

where Pj, j = 0, 1, 2 are projectors on the j-spin states. The SSM(π)
0  sigma model instead 

interpolates the UV CFT to an IR CFT which is a WZW SU(2)1 model. The spectrum consists 
of two doublets, left(L)- and right(R)-moving. L − L, R − R, and R − L scattering matrices 
are all the same and given by [17]

S(LL)(θ) = S(RR)(θ) = S(LR)(θ) =
Γ
( 1

2 + θ
2iπ

)
Γ
(
− θ

2iπ

)

Γ
( 1

2 − θ
2iπ

)
Γ
(

θ
2iπ

) θ1− iπP
θ − iπ� (2.4)

with the permutation matrix P .
The sausage model is defined by a deformation of the above S-matrices. These scattering 

theories, denoted by SST(±)
λ , have the same particle spectrum as SSM(0,π)

0 , respectively. The 
non-vanishing S-matrix elements of SST(+)

λ  for the triplet (−, 0,+) are [10]

S++
++(θ) = S+−

+−(iπ − θ) =
sinh (λ(θ − iπ))
sinh (λ(θ + iπ))

,� (2.5)

S0+
+0(θ) = S00

+−(iπ − θ) =
−i sin(2πλ)

sinh (λ(θ − 2iπ))
S++
++(θ),� (2.6)

S+0
+0(θ) =

sinh (λθ)

sinh (λ(θ − 2iπ))
S++
++(θ),� (2.7)

S−+
+−(θ) = − sin(πλ) sin(2πλ)

sinh (λ(θ − 2iπ)) sinh (λ(θ + iπ))
, S00

00(θ) = S+0
+0(θ) + S+−

−+(θ).

�

(2.8)

This S-matrix reduces to (2.2) and (2.3) in the λ → 0 limit. If 0 � λ < 1/2, all the S-matrix 
elements in (2.5)–(2.8) have no poles in the physical strip 0 � �m θ < π. At λ = 1/2 the the-
ory becomes free and the triplet becomes a complex fermion and a boson with the same mass. 

The SST(+)
λ  becomes very complicated in the domain of λ > 1/2. The S-matrix elements have 

bound-state poles which should be analyzed by complete bootstrap processes and there is no 
evidence that the scattering theory is a consistent one. We focus only in the ‘repulsive’ domain 
0 � λ < 1/2 in this paper.

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005
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The non-vanishing S-matrix elements of SST(−)
λ  between two (L- and R-movers) sets of 

massless doublets (+,−) are given by [10]

U++
++(θ) = U−−

−−(θ) = U0(θ),� (2.9)

U+−
+−(θ) = U−+

−+(θ) = − sinh (λθ/(1 − λ))

sinh (λ(θ − iπ)/(1 − λ))
U0(θ),� (2.10)

U+−
−+(θ) = U−+

+−(θ) = −i
sin (πλ/(1 − λ))

sinh (λ(θ − iπ)/(1 − λ))
U0(θ),� (2.11)

U0(θ) = − exp

[
i
∫ ∞

0

sinh ((1 − 2λ)πω/(2λ)) sin(ωθ)
cosh(πω/2) sinh ((1 − λ)πω/(2λ))

dω
ω

]
.� (2.12)

As λ → 0, this reduces to (2.4).

Main claim of [10] is that the scattering theories SST(±)
λ  correspond to a deformed sigma 

model described by an effective action with ϑ = 0,π

ASSM(ϑ)
ν

=

∫
(∂µY)2 + (∂µX)2

a(t) + b(t) cosh(2Y)
d2x + iϑT ,� (2.13)

with RG flows in the leading order given by

a(t) = −ν coth

(
ν(t − t0)

2π

)
, b(t) = −ν/ sinh

(
ν(t − t0)

2π

)
.� (2.14)

By comparing bulk free energy from this action coupled with an external field with Bethe 
ansatz computation based on the S-matrix, the authors of [10] have found the relation in the 
weak coupling region,

ν = 4πλ+O(λ2).� (2.15)

Another important support comes from the thermodynamic Bethe ansatz (TBA) analysis. 
In the UV limit t ∼ −∞, where the target space looks like a long sausage with a length L and 
a circumference l

L ≈
√

2ν
2π

(t0 − t), l = 2π

√
2
ν

,� (2.16)

one can compute the effective central charge from the Schrödinger equation of the zero-mode 
of the field Y based on the effective action (2.13) which is valid in semi-classic limit ν � 1. 
The central charge is expressed as a function of the system size r which is related to the RG 
scale by t − t0 = log(rΛ0); 

cν(r) = 2 − ν

4π

[
3π2

2(η + 2 log 2)2 +O(η−4)

]
, with η =

ν

4π
(t0 − t).

� (2.17)
In the factorizable scattering theory side, the TBA can be used for the effective central 

charge. Derivation of the TBA for the SST(±)
λ  is not trivial, however, due to the matrix struc-

ture of the S-matrix. A direct derivation is viable only for a special value of λ, namely,

λ =
1
N

, N = 2, 3, . . . .� (2.18)

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005



5

For this case, the TBA system includes only finite number of unknown functions εa 
(a = 0, 1, . . . , N ) which satisfy

rρa(θ) = εa(θ) +

N∑
b=0

∫ ∞

−∞

lab

cosh(θ − θ′)
log

(
1 + e−εb(θ

′)
) dθ′

2π
,� (2.19)

where the driving terms are ρa(θ) are

ρa(θ) = mδa0 cosh θ for SST(+)
λ ; ρa(θ) =

m
2
(
δa0eθ + δa1e−θ

)
for SST(−)

λ ,
� (2.20)

and lab is the incidence matrix of the graph given in figure 1. The effective central charge from 
the TBA system is given by

cTBA(r) =
3r
π2

∑
a

∫ ∞

−∞
ρa(θ) log

(
1 + e−εa(θ)

)
dθ.� (2.21)

Both analytic and numerical analysis have been applied for the TBA and shown that (2.21) 
is matching with (2.17) for the special values of λ = 1/N . In the next section, we will derive 
NLIE which is valid for generic value of λ in the repulsive regime.

3.  NLIE

3.1. T − Q system

The TBA system can be transformed to ‘Y-system’,

y+y− = Y2, y+2 y−2 = Y0Y1Y3,� (3.1)

y+k y−k = Yk−1Yk+1, k = 3, . . . , N − 3� (3.2)

y+N−2y−N−2 = YN−3YN−1YN , y+N−1y−N−1 = y+N y−N = YN−2� (3.3)

where ya = e−εa(θ), Ya = 1 + ya, and y±a = ya(θ ± iπ/2). For the nodes with driving terms, 
we can impose extra relations

y1 = y, y0 = ξy, ξ = e−mr cosh θ, for SST(+)
λ=1/N ,� (3.4)

y0 = ξ+y, y1 = ξ−y, ξ± = e−mr exp(±θ)/2, for SST(−)
λ=1/N .� (3.5)

Next step is to identify this Y-system with that of the su(2) system, for which we use nota-
tions zk and Zk = 1 + zk to distinguish from (3.3), by relating

z+k z−k = Zk−1Zk+1, zk ≡ yk, k = 2, . . . , N − 2,� (3.6)

Z1 = Y0Y1, ZN−1 = YN−1YN .� (3.7)

For this regular part we can find corresponding ‘T-system’ (we are using the φ = 1 gauge)

T+
k T−

k = 1 + Tk−1Tk+1, k = 2, . . . , N − 2.� (3.8)

by using (3.7) and relations

zk = Tk−1Tk+1, T+
k T−

k = Zk, k = 1, . . . , N − 1.� (3.9)

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005
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From equations (3.3) and (3.8), one can notice that yN−1 = yN = TN−2. Furthermore, along 
with (3.7), one can find

ZN−1 = T+
N−1T−

N−1 = 1 + TN−2TN = YN−1YN = (1 + yN)
2 = (1 + TN−2)

2,
� (3.10)

which leads to

TN = 2 + TN−2.� (3.11)

For the su(2) T-system we can always find the corresponding Baxter T − Q system [18]

Tk+1Q[k] − T−
k Q[k+2] = Q̄[−k−2], T−

k Q̄[−k] − Tk−1Q̄[−k−2] = Q[k],� (3.12)

where we use a short notation f [k](θ) ≡ f (θ + iπk/2). We note that both yk and Tk functions 
are real analytic. Following [18], one can eliminate Q̄ from the T − Q system to obtain the 
second order difference equation

Q++ + Q−− = AQ, A =
T [−k+1]

k + T [−k−1]
k−2

T [−k]
k−1

,� (3.13)

where the coefficient A becomes independent of k by using (3.8). Similarly, eliminating Q in 
(3.12),

Q̄++ + Q̄−− = ĀQ̄, Ā =
T [k+3]

k + T [k+1]
k+2

T [k+2]
k+1

,� (3.14)

where Ā is also k-independent. Therefore, inserting k = N  for A and k = N − 2 for Ā, we get

A =
2 + T [−N+1]

N−2 + T [−N−1]
N−2

T [−N]
N−1

, Ā =
2 + T [N−1]

N−2 + T [N+1]
N−2

T [N]
N−1

� (3.15)

where the identity (3.11) is used. From this we obtain

Ā = A[2N] → Q̄ = Q[2N].� (3.16)

Figure 1.  lab is 1 if nodes a and b are connected in affine DN Dynkin diagram and 0 if 

not. Upper diagram is for SST(+)
λ=1/N and lower for SST(−)

λ=1/N with N � 4. For N = 3, 

only non-zero lab are la,a+1 = 1 with a = 0, 1, 2, 3 and cyclic. For N = 2, all lab = 0.

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005
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The final relation can be analytically continued for any real value of N, hence λ.

3.2.  NLIE from T − Q system

We define new functions by

bk =
Q[k+2]T−

k

Q̄[−k−2] , Bk = 1 + bk =
Q[k]Tk+1

Q̄[−k−2] ,� (3.17)

which satisfy the NLIE functional equations

bkb̄k = Zk, B+
k B̄−

k = Zk+1.� (3.18)

Using Fourier transform relation

f̃ [α](ω) = pα f̃ (ω), p ≡ e
ωπ

2 ,� (3.19)

we can express relations (3.17) in Fourier space5

b̃k = pk+2Q̃ + p−1T̃k − p−k−2 ˜̄Q,� (3.20)

B̃k = pkQ̃ + T̃k+1 − p−k−2 ˜̄Q,� (3.21)

and relations in (3.9) and (3.18)

T̃k = s̃Z̃k, T̃k+1 = s̃Z̃k+1, pB̃k + p−1 ˜̄Bk = Z̃k+1, b̃k +
˜̄bk = Z̃k,

� (3.22)
with

s̃ =
1

p + p−1 =
1

2 cosh ωπ
2

.� (3.23)

Now using equation (3.16) which becomes

˜̄Q = p2NQ̃,� (3.24)

we can obtain the NLIE in the Fourier space

b̃k =
pN−k−2 − pk+2−N

pN−k−1 − pk+1−N s̃ (B̃k − ˜̄Bk) + p−1s̃Z̃k,� (3.25)

˜̄bk =
pN−k−2 − pk+2−N

pN−k−1 − pk+1−N s̃ (˜̄Bk − B̃k) + ps̃Z̃k.� (3.26)

These equations are valid for any integer k. We choose the simplest case k = 1 and couple 

the NLIE part to the remaining Y-functions. The NLIE for the sausage model for the SST(+)
λ  

is written in terms of the complex function b = b1 and real function y = y1, y0 = ξy and the 
kernel K which happens to be that of the sine-Gordon model

K̃ =
pN−3 − p3−N

pN−2 − p2−N s̃ =
sinh

(
ωπ(1−3λ)

2λ

)

2 sinh
(

ωπ(1−2λ)
2λ

)
cosh ωπ

2

.� (3.27)

5 In this section we denote by f̃ (ω) the Fourier transform of the logarithmic derivative of the function f (θ).

C Ahn et alJ. Phys. A: Math. Theor. 50 (2017) 314005
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The final set of equations in the Fourier space are

b̃ = K̃ (B̃ − ˜̄B) + p−1s̃Ỹ1Ỹ0,� (3.28)

˜̄b = K̃ (˜̄B − B̃) + ps̃Ỹ1Ỹ0,� (3.29)

ỹ = ps̃B̃ + p−1s̃˜̄B.� (3.30)

As usual, we move the integration contours away from the real axis by a certain amount and 
define new functions

a = b[α], ā = b̄[−α], 0 < α < 1,� (3.31)

which can give the hybrid-NLIE equations in the rapidity space for the SST(+)
λ ,

log a = K � log(1 + a)− K[2α] � log(1 + ā) + s[α−1] � [log(1 + y) + log(1 + ξy)] ,
�

(3.32)

log ā = K � log(1 + ā)− K[−2α] � log(1 + a) + s[1−α] � [log(1 + y) + log(1 + ξy)] ,
� (3.33)

log y = s[1−α] � log(1 + a) + s[α−1] � log(1 + ā).� (3.34)

Here � is a convolution defined by f � g(θ) =
∫∞
−∞ f (θ − θ′)g(θ′)dθ′ . The ground-state 

energy is given by

E(r) = − m
2π

∫ ∞

−∞
cosh θ log(1 + ξy).� (3.35)

For the SST(−)
λ , the NLIE equations can be similarly written as

log a = K � log(1 + a)− K[2α] � log(1 + ā) + s[α−1] �
[
log(1 + ξ+y) + log(1 + ξ−y)

]
,

�
(3.36)

log ā = K � log(1 + ā)− K[−2α] � log(1 + a) + s[1−α] �
[
log(1 + ξ+y) + log(1 + ξ−y)

]
,

�
(3.37)

log y = s[1−α] � log(1 + a) + s[α−1] � log(1 + ā),� (3.38)

along with the ground-state energy given by

E(r) = − m
4π

∫ ∞

−∞

[
eθ log(1 + ξ+y) + e−θ log(1 + ξ−y)

]
.� (3.39)

These are our proposal for the NLIE equations of the sausage model with generic coupling 
0 � λ < 1/2.

3.3.  IR limit: next-to-leading order vacuum correction

As a check for the NLIE of the SST(+)
λ , we consider the IR limit, mr � 1. In this limit, the 

variables can be expanded as

a = z(1 + w + . . .), y = h(1 + u + . . .),� (3.40)
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where z, h are the leading coefficients which are finite but θ-independent, and u, w are next-to-
leading order of O(e−mr). Inserting into the NLIE equations, it is easy to find that z = 2 and 
h = 3. Then the NLIE is linearized as follows:

w =
2
3

K � w − 2
3

K[2α] � w̄ + s[α−1] �

(
3ξ +

3
4

u
)

,� (3.41)

w̄ =
2
3

K � w̄ − 2
3

K[2α] � w + s[1−α] �

(
3ξ +

3
4

u
)

,� (3.42)

u =
2
3

s[1−α] � w +
2
3

s[α−1] � w̄.� (3.43)

These linearized equations can be readily solved by Fourier transforms,

ũ =
1
3
ξ̃ϕ̃, ϕ̃ = 8

sinh
[
πω

( 1
2λ − 1

)]
sinh πω

2λ
− 4

sinh
[
πω

( 1
2λ − 2

)]
sinh πω

2λ
.� (3.44)

The energy in (3.35) can be also expanded as

E = E(1) + E(2)
1 + E(2)

2 +O(e−3mr),� (3.45)

E(1) = −e1m
2π

∫ ∞

−∞
cosh θ e−mr cosh θ dθ,� (3.46)

E(2)
1 =

e2m
4π

∫ ∞

−∞
cosh θ e−2mr cosh θ dθ,� (3.47)

E(2)
2 = − m

2π

∫ ∞

−∞
dθ cosh θ e−mr cosh θ

∫ ∞

−∞
dθ′ϕ(θ − θ′) e−mr cosh θ′

dθ′,

�

(3.48)

with e1 = 3, e2 = 9 and ϕ(θ) is the Fourier transform of ϕ̃ in (3.44).
From the Lüscher expansion we get the same formulae with e1 = n, e2 = n2, where n is 

the number of particles and

ϕ(θ) =
1

2πi
d
dθ

log detS(+)
λ (θ),� (3.49)

where S(+)
λ  is the S-matrix (2.5)–(2.8). One can check that the expansion is consistent with the 

triplet spectrum for the SST(+)
λ  and the S-matrix.

One can check that the NLIE of the SST(−)
λ  generates RG flow into c = 1 CFT in the IR 

limit.

3.4.  UV limit

We have checked numerically that the NLIE system matches with the TBA system accurately 
for the values of 1/λ  =  integer in the limit mr � 1. To understand the UV limit in more 
details, we generate the effective central charge from the NLIE system for generic λ (and 

from the TBA for integer values of 1/λ) for SST(+)
λ  and compare with analysis based on the
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SSM(0)
ν  action. Analysis based on the zero-mode dynamics in [10], which leads to (2.17), is

c(r) = 2 − 4π
ν

3π2

2(log(mr) + δ)2 ,� (3.50)

and we made a quadratic polynomial fit to the data points 1/(2 − c(r)) in the variable log(mr). 
In figure 2, we have plotted the effective central charge c(r) versus − log10(mr) where dots are 
those from numerical solutions of the NLIE and the curve is the fitted quadratic polynomial in 
equation (3.50) for λ = 1/3. It shows an excellent agreement between the NLIE and reflection 
relation in the UV limit.

Furthermore, from the coefficient of the quadratic term, one can find exact ν − λ relation 
for generic value of λ. From numerical analysis summarized in table 1, we conclude that exact 
ν − λ relation should be

ν

4π
=

λ

1 − 2λ
,� (3.51)

which is consistent with equation (2.15). In appendix, we have derived the effective central 
charge in the UV limit analytically by utilizing a method used in the study of the sinh-Gordon 

Figure 2.  Effective central charge c(r) versus − log10(mr): NLIE (dots) and quadratic 
fitting (curve) for λ = 1/3.

Table 1.  Quadratic fitting data in the UV limit

λ ν
4π (numeric) ν

4π by (3.51)

1/2.7 1.4289 1.4286
1/2.9 1.1113 1.1111
1/3.2 0.8333 0.8333
1/4.5 0.3992 0.4000
1/5.5 0.2845 0.2857
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model in this limit [19–21] and proved (3.51) analytically. This exact ν − λ relation (3.51) is 
consistent with the TBA result valid for integer values of 1/λ [10].

4.  Conclusion

The sausage model is guiding how to generalize integrable NLS models. In this paper, we 
have proposed the NLIE for the model which are valid for generic values of λ in the repulsive 
domain of 0 � λ < 1/2. We have analyzed both IR and UV behaviours of the NLIE to estab-
lish direct connections with the S-matrix and an exact relation between λ and ν.

A number of releted issues need further studies. It will be interesting to elaborate more 
on the zero-mode dynamics to that of reflection amplitude of the sine-Liouville theory [22]. 
Another challenge is to extend either TBA or NLIE to the sausage model in the ‘attractive’ 
domain λ > 1/2. Understanding these cases will certainly help constructing NLIEs for the 
deformed AdS/CFT systems, which gets a lot of attention recently.
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Appendix.  UV expansion of the sausage NLIE

A.1.  NLIE setup

Introducing the notation

y(θ) = e−ε1(θ), ξ(θ)y(θ) = e−ε0(θ), a(θ) = e−ε2(θ), ā(θ) = e−ε3(θ),
� (A.1)

where

ε1(θ) and ε0(θ) = ε1(θ) + mr cosh θ are real, and [ε2(θ)]
∗ = ε3(θ),� (A.2)

we can rewrite the sausage NLIE in the TBA-like’ form

δa0 mr cosh θ = εa(θ) +
1

2π

∑
b

∫ ∞

−∞
dθ′Ψab(θ − θ′)Lb(θ

′), La = ln
(
1 + e−εa

)
.

� (A.3)
Here the kernel matrix is

Ψ =




0 0 s[1−α] s[α−1]

0 0 s[1−α] s[α−1]

s[α−1] s[α−1] K −K[2α]

s[1−α] s[1−α] −K[−2α] K


 .� (A.4)

K and s are even, real analytic functions and (for real θ) this implies the relations

[Ψab(θ)]
∗ = Ψba(θ) = Ψab(−θ),� (A.5)
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and in Fourier space the relations

[Ψ̃ab(ω)]
∗ = Ψ̃ab(ω), Ψ̃ab(−ω) = Ψ̃ba(ω).� (A.6)

We write the Taylor expansion of the Fourier kernels as

Ψ̃ab(ω) =

∞∑
n=0

(−i)nΨ̃ab,nω
n.� (A.7)

The Taylor coefficients satisfy the symmetry relations

Ψ̃∗
ab,n = (−1)nΨ̃ab,n Ψ̃ab,n = (−1)nΨ̃ba,n.� (A.8)

The NLIE equations (A.3) are consistent with the symmetry relations

L∗
2(θ) = L3(θ) = L2(−θ).� (A.9)

Furthermore, L0(θ) and L1(θ) must be real and even. For later purposes we calculate the first 
few Taylor coefficients:

Ψ̃ab,0 =




0 0 1/2 1/2
0 0 1/2 1/2

1/2 1/2 p/2 −p/2
1/2 1/2 −p/2 p/2


 , p =

N − 3
N − 2

,� (A.10)

Ψ̃ab,1 =




0 0 h1 −h1

0 0 h1 −h1

−h1 −h1 0 −l1
h1 h1 l1 0


 , h1 =

iπ(1 − α)

4
, l1 =

iαπp
2

,

� (A.11)

Ψ̃ab,2 =




0 0 h2 h2

0 0 h2 h2

h2 h2 q2 l2
h2 h2 l2 q2


 , h2 =

π2(2α− α2)

16
, q2 =

p(N − 1)π2

24
, l2 =

pα2π2

4
− q2.

� (A.12)
Using the Fourier coefficients we can formally rewrite the NLIE integral equations in the 

form of infinite order differential equations:

δa0 mr cosh θ = εa(θ) +
∑

b

∞∑
n=0

Ψ̃ab,nL(n)
b (θ),� (A.13)

where

L(n)
a (θ) =

dn

dθn La(θ).� (A.14)

It is convenient to write (A.13) in terms of the functions La only:

δa0 mr cosh θ +
∑

b

MabLb(θ) + ln
(

1 − e−La(θ)
)
=

∑
b

∞∑
n=1

Ψ̃ab,nL(n)
b (θ).

�

(A.15)

Here we introduced the matrix
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Mab = δab − Ψ̃ab,0.� (A.16)

Note that this matrix has a zero mode:
∑

b

Mab =
∑

a

Mab = 0.� (A.17)

The effective central charge is given by

c(r) =
6mr
π2

∫ ∞

0
dθ cosh θL0(θ).� (A.18)

In the UV limit, r → 0, the cosh θ  factor can be approximated by eθ/2:

c(r) ≈ 3mr
π2

∫ ∞

0
dθ eθL0(θ).� (A.19)

Here and in the following the meaning of the symbol  ≈  is that the error is power-like, O(rγ), 
for r → 0. Introducing the variable

x = ln
2

mr
,� (A.20)

for x → ∞ the error is exponentially small, O(e−γx).

A.2.  Zamolodchikov trick

Zamolodchikov introduced the integral

c̃(r, y) =
3mr
π2

∫ ∞

y
dθ eθL0(θ).� (A.21)

The same function is defined by the relations

∂c̃(r, y)
∂y

= − 6
π2 ey−xL0(y), c̃(r,∞) = 0.� (A.22)

c̃ is a useful function, because, as it is easy to see, in the central region

−Ax < y < Ax for any 0 < A < 1� (A.23)

c(r) ≈ c̃(r, y).� (A.24)

Let us assume that y is in the central region or larger: y > −Ax . In this region (A.15) can be 
approximated by

δa0 ey−x +
∑

b

MabLb(y) + ln
(

1 − e−La(y)
)
≈

∑
b

∞∑
n=1

Ψ̃ab,nL(n)
b (y).� (A.25)

Following an analogous construction in the sinh-Gordon model we define
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˜̃c(r, y) =
3
π2

{ ∞∑
n=2

∑
a,b

Ψ̃ab,n

n−1∑
k=1

(−1)k+1L(k)
a (y)L(n−k)

b (y)− 2L0(y)ey−x

−
∑
a,b

La(y)MabLb(y)− 2
∑

a

Li2
(

e−La(y)
)}

,

�

(A.26)

where Li2 is the dilogarithm function

Li2(z) =
∞∑

n=1

zn

n2 .� (A.27)

It is related to the Rogers dilogarithm L by

L(z) = Li2(z) +
1
2
ln z ln(1 − z).� (A.28)

Using (A.25) it is easy to show that ˜̃c satisfies

∂˜̃c(r, y)
∂y

≈ − 6
π2 ey−xL0(y),� (A.29)

which means that the functions ̃c and ̃̃c differ by a constant only. To calculate this constant we 
consider ˜̃c(r,∞). In the limit y → ∞

L0(y) → 0� (A.30)

and the other three L-functions go to constant values:

Lµ(y) → L̂µ, µ = 1, 2, 3,� (A.31)

where

L̂µ = ln(1 + x̂µ), x̂µ = e−εµ(∞).� (A.32)

Using the symmetry properties we write

x̂1 = h > 0 real, x̂2 = z, x̂3 = z∗.� (A.33)

In terms of these variables the asymptotic NLIE equations
∑
ν

Mµν L̂ν + ln
(

1 − e−L̂µ

)
= 0� (A.34)

can be written

h = |1 + z|, z =
√

1 + h exp{ip arg(1 + z)}.� (A.35)

Since

|arg(1 + z)| � |arg(z)|,� (A.36)

for | p| < 1 (N > 5/2) z must be real and positive and the only solution is

z = 2, h = 3.� (A.37)

We can now calculate
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˜̃c(r,∞) =
3
π2

{
−
∑
µ,ν

L̂µMµν L̂ν − π2

3
− 2

∑
µ

L
(

e−L̂µ

)
−
∑
µ

L̂µ ln
(

1 − e−L̂µ

)}

= −1 − 6
π2

∑
µ

L
(

e−L̂µ

)
= −1 − 6

π2 {L(1/4) + 2L(1/3)} = −2.

�

(A.38)

In the second line we used the identity
n∑

k=2

L
(

1
k2

)
+ 2L

(
1

n + 1

)
=

π2

6� (A.39)

for n = 2. We conclude

c̃(r, y) ≈ 2 + ˜̃c(r, y).� (A.40)

In the central region we thus have

c(r) ≈ 2 +
6
π2

{
1
2

∞∑
n=2

∑
a,b

Ψ̃ab,n

n−1∑
k=1

(−1)k+1L(k)
a (y)L(n−k)

b (y)

− 1
2

∑
a,b

La(y)MabLb(y)−
∑

a

Li2
(

e−La(y)
)}

.

�

(A.41)

In the same region we can neglect the mass term and simplify the NLIE equations:

∑
b

MabLb(y) + ln
(

1 − e−La(y)
)
≈

∑
b

∞∑
n=1

Ψ̃ab,nL(n)
b (y).� (A.42)

A.3.  No plateau solution

Usually in the UV limit x → ∞ a long plateau is formed, in the central region the L-functions 
are approximately constant and satisfy the constant version of (A.42):

∑
b

MabLb + ln
(
1 − e−La

)
= 0.� (A.43)

Introducing

xa = e−εa(0), La = ln(1 + xa)� (A.44)

the symmetry properties imply

x0 = x1 = h > 0 real, x2 = x3 = z real� (A.45)

and the constant NLIE becomes

h = |1 + z|, z = (1 + h) exp{ip arg(1 + z)}.� (A.46)

For | p| < 1 the only possibility is

arg(z) = arg(1 + z) = 0 (z > 0).� (A.47)

The constant NLIE is reduced to the contradictory pair of equations

h = 1 + z, z = 1 + h.� (A.48)
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Thus there is no plateau solution and we conclude that, similarly to what happens in the sinh-
Gordon model,

εa(0) → −∞ (x → ∞).� (A.49)

A.4.  Zamolodchikov Ansatz

We now introduce a ‘coupling constant’ g which goes to zero as x → ∞ and (in the central 
region) expand the L-functions perturbatively as

La(θ) = Wa ln

(
1
g2

)
+ �a,0(gθ) + g�a,1(gθ) + g2�a,2(gθ) + . . .� (A.50)

Putting this expansion into (A.42) the O(ln g2) (divergent) term gives
∑

b

MabWb = 0,� (A.51)

so Wa must be proportional to the zero mode,

Wa = W.� (A.52)

We choose W = 1 so that the ‘potential’ term

ln
(

1 − e−La(y)
)

� (A.53)

can also be expanded in integer powers of the coupling and we have a consistent perturbation 
theory that can be solved order by order in g. At O(1) we have

∑
b

Mab�b,0(ζ) = 0.� (A.54)

It follows that �a,0 is also proportional to the zero mode:

�a,0(ζ) = �0(ζ).� (A.55)

The (so far) undetermined function �0 must be real and even. The O(g) equation is
∑

b

Mab�b,1(ζ) =
∑

b

Ψ̃ab,1�
′
0(ζ).� (A.56)

We introduce

ηa =
∑

b

Ψ̃ab,1 =
iπ
2
(α− 1 − αp)




0
0
1
−1


 .� (A.57)

and define Ya as the solution of the linear equation
∑

b

MabYb = ηa� (A.58)

with the auxilliary condition

Y0 = Y1 = 0.� (A.59)

(This extra condition is necessary to make the solution unique since the matrix M is degener-
ate.) We find
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Ya = q




0
0
1
−1


 , q =

(α− 1 − αp)iπ
2(1 − p)

.� (A.60)

The general solution of the O(g) problem is

�a,1(ζ) = Ya�
′
0(ζ) + �1(ζ),� (A.61)

where the undetermined function �1 must be real and even.
At O(g2) we have

∑
b

Mab�b,2(ζ)− e−�0(ζ) =
∑

b

Ψ̃ab,1�
′
b,1(ζ) +

∑
b

Ψ̃ab,2�
′′
0 (ζ).� (A.62)

We will now use the consistency of this system to determine �0. Summing over a we have

−4e−�0(ζ) = −
∑

a

ηa�
′
a,1(ζ) +

∑
a,b

Ψ̃ab,2�
′′
0 (ζ) = 2B�′′0 (ζ),� (A.63)

where

B =
1
2

∑
a,b

Ψ̃ab,2 −
1
2

∑
a

ηaYa =
π2(N − 2)

4
.� (A.64)

Note that the constant B is α-independent.
The second order differential equation satisfied by �0 is of the same form as in the sinh-

Gordon model and its even solution is unique (up to rescaling the coupling):

�0(ζ) = ln
cos2(ζ)

B
.� (A.65)

From this solution we see that in the central region eLa(θ) is everywhere large, of the order 
1/g2:

eLa(θ) =
1
g2

(
cos2(gθ)

B
+ . . .

)
� (A.66)

But there is no reason why at the boundary of the central region, at θ = x, eLa(θ) should be 
large. We require it is O(1) and this fixes the relation between the coupling and x:

g ∼ π

2x
.� (A.67)

More precisely, the coupling must have a large x expansion of the form

g =
π

2

(
1
x
+

g2

x2 + . . .

)
.� (A.68)

It is not possible to determine the higher terms in this expansion with the present method, only 
the leading term is fixed.

Using the perturbative solution in (A.41) we can calculate the perturbative expansion of 
the central charge:

c(r) ≈ 2 + g2∆2 + . . . ,� (A.69)
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where

∆2 =
6
π2

{
B�′20 − 4e−�0

}
= −24B

π2 = −6(N − 2).� (A.70)

The final result is

c(r) ≈ 2 − 3π2

2
N − 2

x2 + . . .� (A.71)
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