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Abstract

We study on-shell and off-shell properties of the supersymmetric sinh-Gordon and
perturbed SUSY Yang-Lee models using the thermodynamic Bethe ansatz and form
factors. Identifying the supersymmetric models with the Eight Vertex Free Fermion Model,
we derive an inversion relation for the inhomogeneous transfer matrix and TBA equations
and get correct UV results. We obtain two-point form factors of the trace of the energy—
momentum tensor using the Watson equations and their SUSY transformations. As an
application, we compute the UV central charge using these form factors and the spectral
representation of the C-theorem.

1. Introduction

For 2D integrable field theories S-matrices are purely elastic, all incoming
momenta are conserved and multi-particle scattering amplitudes are factorized
into a product of two-particle S-matrices. These S-matrices, in turn, should satisfy
Yang-Baxter equations which often determine the S-matrices completely along
with unitarity and crossing symmetry [1]. The S-matrix provides essential tools to
understand 2D field theories. First of all, the S-matrix gives information on the
UV behaviour of the theory by relating the Casimir energy on the cylinder to the
central charge of the corresponding UV conformal field theory (CFT) [2]. This
program known as thermodynamic Bethe Ansatz (TBA) [3] has provided consis-
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tency checks for many factorizable scattering theories either with local lagrangians
or without them such as perturbed CFTs [4].

S-matrix plays an important role in off-shell physics as well. It can be used to
determine off-shell quantities such as correlation functions by computing the
matrix elements of an operator on the basis of the on-shell particles. These objects
known as form factors (FFs) may be computed exactly using only the S-matrices
and particle spectrum (bound states) as input [5,6]. With exact FFs correlation
functions are given by an infinite sum over intermediate on-shell states. This form
factor approach has the advantage for the computation of correlation functions of
massive integrable models that the infinite sum over all intermediate states
converges very fast. For many cases, upto two-point FFs give quite accurate results
on off-shell quantities [7-10]. Furthermore, the two-point FFs can be related to
some exact non-perturbative informations of the underlying theories, such as the
wave function renormalization [5,12] and the UV central charges through the
spectral representation of the C-theorem [8,13,9]. In this sense, without complete
solutions of the FFs one can still extract non-perturbative off-shell informations
from the FFs.

While the TBA analysis or the FF computation can be relatively simple for
diagonal scattering theory, which has no mass degeneracy, non-diagonal scattering
theories entail much more complicacy. By non-diagonal we mean theories with
different types of particles of the same mass for which the scattering of two
particles can occur in more than one channel. Most of the interesting 2D
integrable field theories such as the soliton scattering theories, theories with
internal gauge symmetries, and supersymmetric theories belong to this class.

For the non-diagonal theories, the equations for the TBA and FFs are ex-
pressed in terms of monodromy and transfer matrices. To solve the equations, one
needs to diagonalize these matrices. It is remarkable that with some technical
differences the same problem is often met in the study of lattice models [14]. In the
lattice model the Yang—Baxter equations are to be satisfied to construct infinite
number of conserved charges through the commuting transfer matrices. Partition
functions and free energies are expressed in terms of the eigenvalues of the
transfer matrices. Due to this common feature, it is often quite useful to connect
2D field theories with lattice models.

There are two types of the models in the lattice and continuum which are
connected with each other. The first one is the so-called vertex type; the states are
assigned on the lines which form a lattice. For the square lattice, each vertex
consists of four lines and an assigned Boltzmann weight depending on the four
states of the lines [14]. These lines correspond to the world-lines of incoming and
outgoing particles in the scattering theories. While some of these vertex models are
associated with field theories with local lagrangians, there remain many vertex-type
lattice models still to be related to 2D integrable field theories.

The second type is the interacting-round-face models [15]. The Boltzmann
weights are assigned on each vertex on the square lattice, depending on the heights
of four faces. As a special case, if the heights are restricted, one obtains restricted
solid-on-solid (RSOS) type of models. This wide class of lattice models has been
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related to 2D CFTs. Due to the conformal invariance, the corresponding lattice
models are at the criticality. Many exact results including correlation functions
have been obtained using the CFT techniques. This identification can be continued
in the off-critical region. Without the conformal symmetry, the off-critical RSOS
models are associated with CFTs perturbed by relevant operators [16—19]. Again,
S-matrices of the perturbed CFTs are given by the Boltzmann weights of the
RSOS models.

The best known example is the relation between the six-vertex model and the
sine-Gordon (SG) model. The SG model has soliton and anﬂsoliton spectrum and
the S-matrix can be associated with the R-matrix of the slq(2), affine quantum
group [18]. The Boltzmann weights of the six vertex model are the same as the
S-matrix elements after identifying the up and down arrows assigned on each
vertex line with the soliton and antisoliton. In addition, quantum group reduction
of the SG model corresponds to the RSOS lattice model obtained from the six
vertex model. The TBA analysis of these models have been done by diagonalizing
the inhomogeneous transfer matrices of the six-vertex [21-23] and RSOS models
[24].

The complete FFs of the SG model have been obtained by Smirnov using
quantum inverse scattering methods, providing the only known example with the
complete FFs for non-diagonal theories. Based on this information, Smirnov found
axioms for the FFs to satisfy [6]. Therefore, the problem to find complete FFs is
reduced to solve these axioms for a given theory. However, solving these axiomatic
equations completely is very difficult even for diagonal scattering theories except
for a few simplest ones such as Ising, Yang-Lee, and sinh-Gordon models
[7-9,11). The problem becomes much more complicated for the non-diagonal
cases. As an initial step to the problem, we will concentrate on two-point FFs.
Two-point FFs can be determined relatively easily by diagonalizing S-matrix and
evaluating the FFs using the Watson equations [5]. For the supersymmetric
theories, details can be further simplified due to the SUSY relations between the
FFs. As stressed before, the two-point FFs have many useful informations on the
underlying theories.

In this paper, we want to apply these frameworks to the N = 1 supersymmetric
(SUSY) theories. The S-matrices of many SUSY models have been obtained.
These S-matrices have the following factorized form [19,26]:

S(8) = 85(8) @ So(0), (1.1)

where the first factor Sg carries the SUSY indices and commutes with the SUSY
charges while the second one §, is the S-matrices of the models without the
SUSY. So far, several SUSY integrable field theories and perturbed super CFTs
are solved and their S-matrices are derived. An interesting aspect of the SUSY
models is that these S-matrices commuting with SUSY charges are identified with
Boltzmann weights of some lattice models.

For example, for the N=1 SUSY CFTs perturbed by the least relevant
operator, Sg, which commutes with SUSY charges with central extension due to
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the topological charges, is related to the RSOS weights corresponding to the
tricritical Ising model [25]. For the N =2 SUSY models, the first factor is
identified with the Boltzmann weights of the six-vertex model [20,22]. These
relations with lattice models are important not only for the lattice-field theory
correspondence but for actual solutions of the models.

The N =1 SUSY sine-Gordon (SSG) model has been solved in a unconven-
tional way. Its soliton S-matrix has been derived from the results on the perturbed
super CFTs by the least relevant operator [19]. The SUSY part of the SSG soliton
S-matrix is given by the RSOS tricritical Ising model S-matrix while S, is the
ordinary sine-Gordon S-matrix. The S-matrices of the SSG bound states (breathers)
have been derived from multi-soliton scattering amplitudes [27]. In particular,
since the lightest bound states are forming a supermultiplet of the fundamental
fields appearing in the SSG lagrangian, the lightest breather S-matrix of the SSG
model can be analytically continued to get the S-matrix of the supersymmetric
sinh-Gordon (SShG) model. This S-matrix is identical to the one derived first by
Shankar and Witten by explicitly requiring the commutativity with SUSY charges
[28]. Besides, the SSG model with only the lightest breather in the spectrum can be
understood as perturbed super CFTs, the SUSY Yang-Lee (SYL) model [26,27];
the simplest nonunitary super CFT perturbed by the least relevant operator. This
model includes only one supermultiplet of on-shell states and the S-matrix is
identical with that of the SShG model. This S-matrix is our starting point.

These models with N =1 SUSY without a central extension will be identified
with the general eight-vertex models with an external field. If the Boltzmann
weights of the general eight-vertex model satisfy a “free fermion” condition, the
model is exactly solvable and the free energy was derived first from dimer method
[29] and later diagonalizing the transfer matrix [30]. Also, this model has been
identified with the general XY-spin chain model with a magnetic field [31]. This
relation with the lattice model will be very useful in our derivation of TBA
equations for the SShG model. It turns out that the SShG model is at the critical
point of the XY-spin chain model.

We organize this paper in the following way. In the next section, we write down
the lagrangian of the SShG and SSG models and derive the energy—-momentum
tensor supermultiplet and their relations under the SUSY transformation. Also we
present the S-matrices of the models. In sect. 3, we use TBA analysis for the
supersymmetric models to derive the UV central charges. In sect. 4, we compute
the FFs of the SShG model using the Watson equations and SUSY relations of the
energy-momentum tensor. With exact two-point FFs, we derive the UV central
charge of the model using the spectral representation of the C-theorem.

2. N =1 SUSY integrable model and factorizable S-matrix

We present the energy—momentum tensor supermultiplet of the N =1 SSG and
SShG model and the S-matrix of the theories.
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2.1. Lagrangian and energy—momentum tensor

We start with a lagrangian of a general N = 1 SUSY,
Z(P) =1DODP +iW (D), (2.1)
with a scalar superfield &,
D(x, 0)=¢+i0f +i300F, (2.2)

and D and D, the covariant derivatives,
J
Da= £; +i(y“0)a6u. (23)

The Grassman variable 8 is a Majorana spinor *. In terms of the component fields,
one gets

Z(D) = 3(3,8)" + 5iwld + w($)]w + 1 [W($)]". (2.4)
The SSG model is a particular case of Eq. (2.4) with the superpotential

W(d) = %cos([}@). (2.5)

The SShG model is the same superpotential with the purely imaginary coupling
constant 8 =if. The N =1 SUSY algebra is generated by the conserved charges
Q, and Q,,

Q?=P_, Qi=P_ and {(Q,,0Q,} =0, (2.6)

with the light-cone momenta defined as P, = FE + P. These charges act on the
component fields by

Q1¢=i¢1: Ql‘l’1=3+¢a Q1¢2=Fa
Qrd=ih,, Quhy=—0_¢, Q= —F,

with F= —W'($).

Integrability of the SSG and SShG models is established because they are
equivalent to Toda theory based on the twisted super affine Lie algebra C®(2)
[32-34]. The equations of motion of the SSG theory can be rewritten as super
zero-curvature conditions. An infinite number of conserved charges at the classical
level were derived [35] and checked to be preserved at the lowest-order quantum
corrections [36].

The energy-momentum tensor supermultiplet can be expressed by [37]

Jou = [(#@ = W' (D)), DP| , (2.8)

(2.7)

. . 1 01
* Dirac matrices are y° = (,(1) o yi=G o)
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or in light-cone coordinates,

D ®o D -W'(®)PD,P
J. = , , J_= , (2.9)
-W'(®)PD,P D,bs_&
with x .= 3(x; +x,) and 3, =9, + d,,. In terms of the component currents,
V. Y X1+
J, = 1428 “1+i00 1, 2.10
+ 1p2+) (HIT_+ 1v2 X2+ ( )
one gets the energy—momentum tensor of the SSG model,
T,.= 32, 0) +igd,0], T _=1[(0_6)" —iv0 ],
1m? im _
T, =T_,= 3 gEsin Bb — U cos B, (2.11)
and its superpartner
m
V=i, b, V¥, = _i'B_lIJI sin B,
(2.12)

m
11,2—=i¢28—d)’ ‘lp]_= —iEle sin B¢

Including an appropriate normalization factor of 47, we define the following
notation for the SUSY energy-momentum tensor:

T=4xT,,, T=4wT__, O@=4xT,_, (2.13)
and their SUSY partners,

Te=dn¥,,, Tp=47V,_, Op=47V¥,_, Op=47V,,. (2.14)
They are related to each other by the SUSY transformation

Q\Tg=-2T, QT=-70,Ty, Q,0p=-2i0, Q6= -39 0,

Q,Tp=2iT, Q,T=-%_T¢, 0,0.=2i0, ,0=-1_06;.

2.2. On-shell particle states and S-matrix

If the coupling constant of the SSG model in Eq. (2.5) becomes purely
imaginary, we have a simplest N =1 SUSY field theory, namely the SShG model.
Since the potential is not periodic, the soliton spectrum does not exist any more
and the spectrum consists of only the fundamental particles appearing in the
lagrangian, one scalar and fermion supermultiplet. We will denote on-shell states
of these particles by | b(8)) and | f(#)) with a rapidity 6 which is related to the
momentum by E =m cosh 8 and P=m sinh 6.
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The SUSY charges defined in Eq. (2.6) can act on on-shell states as (see subsect
4.2)

0,1 £(8)) =vVm °72|b(0)), Q,1b(8)) =vVm e®/2| f(0)),
Q,1f(0)) = —iVm e */?|b(8)), Q,1b6(8))=Vm e~*/?| £(6)).
(2.16)

It is easy to see that this satisfies N =1 SUSY algebra, Eq. (2.6). The action of
SUSY charges on multiparticle on-shell states can be easily worked out using this
and the anticommutivity of Q_, and the fermion.

The exact S-matrix of the SShG model was derived using the Yang—Baxter
equation, unitarity and crossing symmetry along with the commutativity of the
SUSY charges and the S-matrix [28]. In the basis of two-particle on-shell states in
the order of |b,b,), | fif2), B, f2), | f1by) %, the S-matrix has been obtained to
be (6 =6,—6,)

) 2i sin aw i sin am 0 0
sinh cosh 16
[ sin am ) 2i sin a 0 0
cosh 18 sinh @
$(6) =Y (6) i sin am |’
0 0 1 — 1
sinh 56
i sin am
0 0 — 1
sinh 50

(2.17)

with an arbitrary constant « which will be related to the coupling constant 8 of
the SSG model in a moment. The prefactor Y(8) is needed to make the S-matrix
unitary and crossing symmetric. The following integral form will be useful later:

Yo sinh 16
(0) = sinh 10 + i sin( | e| )
wd¢ sinh(|alr) sinh((1—lal)t) 6t
X -] — inh— |. 2.1
exp fo t cosh?(3t) cosh ¢ S (2.18)

With Y(8) = Y(im — 6) and a factor of i arising in the crossing relation for the
bb — ff channel, the S-matrix of Eq. (2.17) is crossing symmetric.

To determine the constant @ we should refer to another derivation of the SSG
breather S-matrix. Using the SSG soliton S-matrix, one can compute four soliton
scattering amplitudes. By taking bound state poles of the incoming and outgoing

* We use a short notation {b;b,) =|b(8 )b(8,)), etc.
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soliton—antisoliton pairs one can derive the S-matrices of the SSG breathers [27].
In particular the S-matrix of the lightest breathers is the S-matrix of the funda-
mental particles of the SSG and SShG models:

§(0) =Y(6)-2(6) - So(6),

where
S (o sinh 6 + i sin(2am)
o(6) = sinh 6 —i sin(2am)’
2i sin am sin a7
. 1 O 0
sinh 6 cosh 30
sin am 2i sin am
— -1+ — 0 0
cosh 50 sinh 8
#(6) = 0 0 | [ sin am
sinh 16
0 0 [ sin am )
sinh 26

(2.19)

The factor S, is the lightest breather S-matrix of the SG model. The constant « in
Eq. (2.19) is given by the coupling constant of the SSG model [27],

% B’/Am

= = . 2.20
“T 16w 1-B%/4m (2:20)
For the SShG model with B8 =i (B real), this constant reduces to
B‘z 4
- P (2.21)
1+ B%/4x

and — 3<a<0.

Two S-matrices, Eqs. (2.17) and (2.19) are equivalent. The sign difference in the
ff — ff channel is explained because all particles are considered as bosons in Eq.
(2.19) by including the exchange factor —1 arising in ff —ff in the S-matrix
element. In this convention, the crossing relation is satisfied without any extra
factor because all particles are bosonic. Besides, for the SShG model with a < 0,
the S, has no pole in the physical strip. Therefore, S, is nothing but a CDD factor
and can be removed by minimality assumption. For the SSG model, however, with
a coupling in 0 <a <3 (B2<4m/3) the S, does have a bound state pole
corresponding to the second breather.

For a complete description of the SSG model, one should include all the
S-matrices of the solitons and breathers as was done in ref. [27]. Depending on the
values of the coupling constant of the SSG model, the spectrum of the bound
states changes. In particular, if the coupling constant is in the range of % <y/8m <
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1, only the lightest bound states can exist along with the soliton and antisoliton in
the spectrum. If the solitons are truncated from the theory keeping only the
lightest bound states, the scattering theory becomes perturbed CFT by the least
relevant operator. The UV CFT is the SUSY extension of the Yang—Lee model
[26,27]. The S-matrix is given by Eq. (2.19).

3. Thermodynamics of the N =1 SUSY models

In this section we use the TBA method to derive the central charges of N=1
SUSY models. For the purpose we first show that the S-matrices of N =1 SUSY
models are the Boltzmann weights of so-called “free fermion” eight-vertex model.
Using this observation, we can derive the TBA equations from inversion relation of
diagonalizing the transfer matrix. We apply the TBA equations to both the SShG
and SYL models perturbed by the least relevant operator and derive correct UV
central charges.

3.1. Free fermion models

After the celebrating solution of the symmetric eight-vertex model by Baxter,
Fan and Wu obtained an exact expression of the free energy for the general
eight-vertex model with an external field if the Boltzmann weights satisfy some
additional constraint, named the free fermion condition [29]. They called this
model “Free Fermion” model (FFM) although the name is slightly misleading. The
model turned out to be highly non-trivial and interacting.

We start with the Boltzman weights of the general eight-vertex model:

R= 0 by 0 3.1
10 ¢ b 0 (3.1)
d 0 0 a

for the following vertex configurations:

I l | ] [ |

l L= l 1

a. a_ b, b_ ¢ ¢ d d
(3.2)

If R(6) satisfies the Yang—Baxter equation and the free fermion condition

a,a_+b. b =c*+d?, (3.3)
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and if the following combinations of the Boltzman weights are independent of the
rapidity:
- 2cd Y a’+b2—a%-b2 34

a,b_+a b, = 2a,b +ab,)’ (4
the transfer matrix 7 commutes; [7(u), T(v)] = 0. Due to this commutativity, there
exist an infinite number of conserved charges including a hamiltonian of the
corresponding one-dimensional spin-chain model. This hamiltonian has been iden-
tified with that of the XY-model with a magnetic field,

N
Fxy=—1 L [0+ 070 + T (o] 0t + 07 05,y) — hoy], (3.5)
i=1
where o *= 1(c* + io?) with a conventional Pauli o’ matrices.

To identify the FFM with N =1 SShG model, we rewrite the S-matrix of the
SShG model, Eq. (2.19), by rearranging the two-particle basis. In the order of
Ibb), | bf ), | fb), | ff), the R-matrix of Eq. (2.19) becomes the general form of the
FFM with

) 2i sin aw b ) [ sin am 4 sin a1 36
=1+ —", =1, ¢c=—==— -, d=—7, .
I sinh 6 + ¢~ “sinh 10 cosh 16 (3:6)

if we identify 1 and — with |b) and | and « with | f) "
It is an easy exercise to check that these weights satisfy the free fermion
condition Eq. (3.3). Also, the constants I" and & become

I'=sin am, h=-1. (3.7)

Since & = —1 is a critical point of the XY-model, the SShG model corresponds to
the critical point of the general eight-vertex model with free fermion condition and
with vanishing elliptic modulus.

3.2. Diagonalization of transfer matrix

The periodic boundary condition for the non-diagonal scattering theories be-
comes

emal St IA(G]0,,...,0y) =1, (3.8)
where A is an eigenvalue of the transfer matrix 7(8) which is defined by
T(816,,...,05)
= ¥ TSm0 - 0,) 20— 6,) ... S (6 - 6,), (3.9)

a {a}

acting on V&V,

* The Boltzmann weights in Eq. (3.2) become the S-matrix elements if we adopt the convention that
time flows from the bottom-left to the upper-right ( »).
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We use an inversion relation of the transfer matrix to derive the eigenvalues. As
explicitly derived in Appendix A, the inversion relation for N =1 SUSY models
looks like:

T(ul8y,...,00)T(u+imwl6,,...,04)

N N
= (_1)N[HM+(”_91') + l_IM_(u —-6,)
i=1 i=1

N N
+F(]—IF+(u—0,-)+nF‘(u—0,-) ], (3.10)
i=1 i1
where the fermion index operator F is either + 1 for the bosonic state or — 1 for
the fermionic one.
The functions appearing in Eq. (3.10) are expressed in terms of the Boltzmann
weights as follows:

2

- _ g2 - _
M,=a,a_—d-, M_=a,a_—c",

F,=sinh’*p a b, + cosh’p a_b_— 2 sinh ¢ cosh ¢ cd,

F_= —cosh’p a_b,—sinh’¢ a_b_+ 2 sinh ¢ cosh ¢ cd, (3.11)
and
2cd
tanh(2¢) = m =sin am. (3.12)

Using Eq. (3.6) one can find
sinh(30 +iaw) sinh(30 — iam)

M, = H

N sinh 36 sinh 36
I cosh(30 + iam) cosh(30 —iam)

o cosh 36 cosh 36
F cosh(36 + iam) sinh(30 —iaw)

o cosh 16 sinh 18’

sinh(36 + iaw) cosh(20 —iam

F_=— G ) cosh(z ) (3.13)

sinh 16 cosh 16
From these expressions one can notice that under the change u » u +i7
M,->M; and F,—>F.,
therefore, T(u)T(u + mi) = T(u + wi)T(u + 2i). This means

T(ul8y,...,04)=T(u+2mil6,,...,04). (3.14)
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These matrix relations can be easily transformed to equations of the eigenvalues of
the transfer matrices; A(u|8,,...,0,) is a 27i symmetric function,
A(ul8y,...,0y)=A(u+2mil0,,...,0y), (3.15)
and the inversion relation is nicely factorized,
A(ul8,,....00)A(u+mil6,,...,0y4)
[ N cosh(z(u—6,) +ilalm) N sinh(z(u—6;) +ilalw)
izl cosh(3(u —6,)) i=1 sinh(3(u —6,)) }
X[ N cosh(z(u—8,) —ilalm) N sinh(3(u —6,) —iIalﬂ-)}

I1 FY

i1 cosh(3(u —6,)) t sinh(3(u —6,))
(3.16)

Since A(u) is a 2mi-periodic function with poles at u =8, and u =6, +iw, it
can be completely fixed by the location of zeroes on the strip in the complex plain
of —7 <Im[u] <7 and — o < Re[u] < «. Also from the fact that A(u) becomes a
constant as y — %, we can find that
N | siph{w—e)) sinh(3(u—z;))
A(ulé,,...,8,) =const. X - R

(w19, ) kljl sinh(3(u — 6,)) cosh(3(u - 8;))
(3.17)

where the 2N zeroes {z;} and {z;} located on the strip will be determined as
functions of the 6,.

We defined the zeroes in the way that z{ and z; come from the first and
second factors of the r.h.s. of Eq. (3.16), respectively. Therefore, they satisfy

N tanh(3(z7 —6;) +ilalm)

i tanh(3(z; —6,)) ’
N tanh(3(z; —6,) —ilalm)

i1 tanh(3(z; —6,)) T

The solutions of these equations can be written in terms of real variables x, in the
following way:

(3.18)

i =x,—ilalm, x,—ilalm+im,

. . . (3.19)
Zy=xg+ilalm, x,+ilalm—im,
where a real number x, satisfies
N tanh(1(x, —8,) — 3ila|m
(20x = 0) 2 ) .. (3.20)

i=1 tanh(%(xk—()i) + %llalﬁ)

Out of four possible choices of zF for k=1,..., N from Eq. (3.19), only two
choices are allowed. This can be understood easily if one considers the limit of
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|a | — 0. The Boltzmann weights are either +1 or —1 from Eq. (3.6). This means
the transfer matrix is just a constant matrix without any dependence on the
rapidities. Now from Egs. (3.17) and (3.20), the only possibility for the eigenvalues
of the transfer matrix to be independent of 6, is when {x,} ={6]} and when
zf —z, = tim for all k. For example, if one chooses a (z}, z;)=(6, —
ilalm, 6, +ilalm) pair for some k as | @ | — 0, the eigenvalue will get a term like
tanh(3(u — 8,)). Obviously, this eigenvalue should be excluded for the constant
transfer matrix. This leaves only two choices for the zeroes:

(zi,zg) =(x,—ilalm, x,+ilalm—im)
or (x,—ilalm+im, x, +ila|m). (3.21)

From the product form of Eq. (3.16), one notices that if we choose one pair of
zeroes in Eq. (3.21) the other pair becomes zeroes of A(u + iw). Since one can
choose the zeroes between the two possibilities for each k (k=1,..., N), we can
construct 2% different eigenvalues in this way. Also, one can proof that Eq. (3.17)
satisfies Eq. (3.16) because if we divide the r.h.s. of Eq. (3.16) with A(u)A(u + i)
using Eq. (3.17) the final expression has no poles and zeroes while it is bounded.
This means the ratio should be a constant.

Using all these results, the eigenvalues are compactly expressed by

N
1_[ k=1)‘sk(” —Xy)

AMU)e,, .. <., = Const. X , €,=*+1, (3.22)

o 1_[1,'\]:1 sinh(u —6;) )
with

(0 - 0 ilalw " 0 ilalT 303

= —+ — - . :
(8) =sin 5 € 2 cos 5 € > ( )
L
i+ tlalm
o ° o ° o 'Y ° o 'y 0 .
° o ° o ® o ° o ° o
—ila|m

Fig. 1. The zeroes z;} on the complex @ plane.
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€ = + 1 corresponds to the first choice in Eq. (3.21) and € = —1 to the second (see
Fig. 1). The real zeroes x, are determined by Eq. (3.20).

3.3. Thermodynamic Bethe ansatz

From Eq. (3.8) and Eq. (3.22), the PBC equation becomes

N —
1 .imsinh @ Y(e 0‘)
5€

i=1] 8L - Y

and the constraint equation (3.20) in the limit N, L — o are expressed by the
densities p for the allowed states, p! for the occupied states, P , for e=+1
zero-state, and P_ for e = — 1. In terms of these densities, one gets

N

k]tllx\ék(()lxl,...,xN)=l, (3.24)

27p(8) =m cosh 6 + /de'[pl(e')qby(e —0)+P,(0)D,(0-9)
+P_(6)P (6-0)],
2wP(0) = [do' p'(8) (8- 0), (3.25)

where

Y(6)
sinh 6

ad 7
@Y(0)=£Imln[ }, ¢i(0)=£1m In A, (6),

10 [tanh(%0~%i|a|ﬂ')] (3.26)

®,(0) = ——1
(0= 756" anh(10 1 Lilalm)

Using Eq. (3.23) and A_=(A_)*, one can easily show that the kernels are
related by

19

(DT(B) = 2(p+(0) = —2<I>_(9) = 7£1n|:

sinh @ —i sin |a |7

- — , (3.27)
sinh @ +i sin |a |7

which is nothing but the kernel of the sinh-Gordon model. We will denote this
kernel by @. Also, we can eliminate P_ from the first equation of (3.25) using the
second one and P=P_+ P_ to rewrite it as

2mp(8) =m cosh 6
+ [d0[p'(8) [ @y — 1 D] (6—0) + P, (8)P(8—6)],
(3.28)

with convolution defined by [f * gl(6)= /=, (d6'/27)f(0 — ¢')g(8').
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The TBA equations, therefore, can be expressed by
mR cosh § = €(0) + ([DPy— 3P * @] * In[1+c7<])(0)
+(@ * In[1+e~%])(0),
0=&(0) + (P *In[1+e <])(0), (3.29)
in terms of the pseudo-energies € and & defined by
pUO) @ P(0) e F®
p(0) 1+e <@’ Pe) 1+e @

(3.30)

3.4. Central charges of the SShG model

The TBA equations in the UV limit (R — 0) can be easily solved. In particular
the ground-state energy can be expressed by

E(mR) ~ _w%ag,l[y(lixa) —_s;ﬂ(l:_jy“)}, (3.31)

where x, = exp[—e(0)], x; = exp[~-&(0)] and y,=exp[—e(x)] =0, y, =
expl —& ()] = 1. The ground-state energy is related to the UV central charge as
R - 0 through the finite-size correction by E(R)= —(mw/6RXC — 12(4, + 4,))
where 4, and 4, are conformal dimensions of vacuum.

Furthermore, the pseudo-energies become independent of the rapidity around
8 =0 upto 6 ~ —In(mR) and the TBA equations are reduced to mere algebraic
equations,

xp=(1+x)°(1+x,)", x,=(1+x,)", (3.32)
with
= do 1 = df
a =[_w-2?(¢>y— 1o« )(8), b=f;m§§b(0). (3.33)
For the SShG model, a =0 and b=1 from Egs. (3.23) and (3.26) and [~
(d8/2m)P,(8) =1, [, (d6/2m)D(@) =1, [ (d8/27)]D + PNO)=[/* . (d6/

27)®(0))* = 1. Using these values, the solution of Eq. (3.32) can be found easily as
xo=2x, = . This gives the UV central charge (4,=4,=0)

6 3
=Slem+2m) -26) -3
This is correct UV central charge of the SShG model with a boson and a fermion.
3.5. Central charges of the SUSY Yang—Lee model
As explained in the previous section, one can truncate all solitons from the SSG

multi-soliton Hilbert space to have only breathers. In particular, for the coupling
constant a = %, only the lightest breather and its superpartner can exist in the
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spectrum with the S-matrix given in Eq. (2.19) [27]. This is the SYL model
perturbed by the least relevant operator.

The fundamental difference from the SShG S-matrix is that because of o > 0
§,(6) is no more CDD factor. It has a pole which is identified with the particle
itself. If we denote the particles as B and F, the bootstrap relations are

BB(FF) —» B — BB(FF), BF(FB) - F — BF(FB).

Except this difference, all the TBA analysis of the SShG model is equally
applicable to the SYL model.
The SYL conformal theory can be constructed as a coset CFT given by

SU(2) x ® SU(2), Ke» 4 Liao?
, K=2 an +2=7%.
SUQ2) ks ’
The central charge of the model is C = — 4. Due to the non-unitarity of the

model, the lowest conformal dimension is not zero. To determine the lowest
conformal dimension of the model, we refer to the general formula of the general
coset theories. The primary fields of the coset theory have the conformal dimen-
sions given by the following formula {38]:

R +(rp'—smz—(p’—p)2
T HK+2) 4K 4Kpp' ’

p
L+2=—, p'=p+Kq, (3.34)
q

with the restrictions
O0<iI<K, 1<r<p-1, 1<s<p' —1, I=|r—s mod2K]|.

For the SYL model with the values of K=2, p=2, p’ =8, one finds that only
r=1,1=01,2, and s=1, 2, 3, 5, 6, 7 arc allowed. The minimal conformal
dimension arises when (8 —2s)? is minimized, i.e. with s=3. Therefore, the
minimal conformal dimension of the SYL model is A ;, =47;= — ;.

Now we compute the Casimir energy of the model using TBA. Notice that the
only change from the SShG TBA is that the kernel @, in eq. (3.29) gets an extra
factor —(3/96) In §,(68) due to S, in Eq. (2.19). With « > 0 this introduces extra
—1 in the exponent a in Eq. (3.32) to make a= —1. With this change the
algebraic equations now become

1+x,
Cl4x,

and the solutions are x,=v2 and x, =1+ V2. Eq. (3.31) gives C-244 .,

6 V2 1+v2 3
p 3(@)*‘5’ m)‘%) T

as expected.

Xy x,=1+x,, (3.35)
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4. Form factors of the supersymmetric theories

In this section, we derive FFs of the SShG model from the S-matrix. We
compute one-point FFs first to fix overall normalization and two-point FFs using
the Watson equations and SUSY relations of the FFs. Using these FFs we derive
the UV central charge of the SShG model from the spectral representation of the
C-theorem. This provides a consistency check for the FFs and shows the fast
convergence of the FFs expansions of correlation functions.

4.1. Two-point form factors

FFs are matrix elements of a hermitian operator & between vacuum and
in-coming states and can be expressed by

F7  o(015-..,0,) =<01#(0)a,(8,),...,a,(6,))in, (4.1)

where |a(0)) denotes an on-shell particle state of type a with a rapidity 6
(#,>6,> ...>0). These FFs satisfy some basic axioms. While the general FFs
depend on quite complicated recursion relations and are difficult to solve, the
situation becomes quite simple for the two-particle states [6). The two-point FFs
can be written in terms of two factors,

Falaz(ol’ 8,) =Ka1a2(01’ OZ)me(ol —6,), (4.2)

a8,
where F™P satisfies the Watson equation [S5] without any pole,

Foa(0) = Fra (—0)8252(0), F(im—0) =F0(im+6), (4.3)
and the prefactor Kalaz(ﬁl, #,) has all the required poles and operator depen-
dence. Note we omitted a phase factor from the fermion exchange operator
treating all particles as bosonic.

F™n can be determined from the following steps. In the basis which diagonal-
izes the S-matrix, Eq. (4.3) becomes a simple functional relation. Then, using an
integral representation for the ith eigenvalue of the S-matrix, one finds

wdt .ot
S,(0) = exp[fo — () smh;}

=dr fi(t) 6t ] (4.4)

— Fmin — ox — sin®—
i p[ o ¢ snh6 " 27

where 8 =i — 6. Rotating back to the original on-shell two-particle states, one
finds the F™". The function K(8,, 8,) should be determined by the other axioms.
It is a symmetric function of the rapidities if a, = a, and has an im-pole if a; =a,.
The asymptotic behaviour at large rapidities is related to the spin of the operator
and the overall normalization of the FFs is fixed by the one-point function.
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4.2. One-point form factor of the SShG model

We work out one-point function of the SShG model to fix the normalization of
the general FFs. From the Fourier transformation of the elementary fields:

dk 1 | ,

$(x) = f—z;ﬁ—k[bk e %+ b} e k7],
Wl | | (4.5)

w(x) = [ 3 L) &= flogi) e+

with u* = v and with the commutation relations
{fi, f&) =2mkod(k— k'), [by, bl] =2mko8(k—Kk'). (4.6)
On-shell SUSY is determined from the SUSY transformation of the elementary
fields, Eq. (2.7) and | b(8)) = b1(8)|0) and | f(8)) = f(8)|0):

P+
Qi1 f(0)) = —i=——=1b(8)), Q,1b(6)) =iv2v,(8)1f(6)),

V20,(0)
» (4.7)
Qzlf(9)>=im|b(9)>, 0,15(8)) =iv2Zv,(8) | f(6)).
From 0 =<01Q_[¢(0)] f(8))], one gets
Q.1 1(8)) = —iv2u,(8)16(6)), (4.8)

and comparing this with Eq. (4.7), one can find the spinors

0 = —ir] o2 gy = e
v,(8) zze, v,(0) 2e .

This gives the SUSY transformation of on-shell states given above in Eq. (2.16).
Combining this and Eq. (4.5), we fix the one-point function as follows:

014(0)1b(0)> = % 14, (0) f(0)) = \/?(;?68//22) (4.9)

4.3. Form factors of the SShG model

We compute two-point FFs of the trace of energy-momentum tensors and their
SUSY counterparts, ® and @ (Oy), given in Eqgs. (2.13) and (2.14). These
operators are of particular interest for their role in the C-theorem. First, we derive
SUSY relations between the FFs using Eq. (2.15).

From 0=<01Q_[#|a,(8,)a,(0,))], one finds a relation

019,11 1ay(8,)ax(8,)> = — (-1 @10,[a(8,)ax(6,)]), (4.10)
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with F 1 for fermionic and 0 for bosonic. This gives the following relations
between the FFs:

Vm ~ _ Vm _ _
Fo=i—— [ ES + o Fy]. B =i [ iy — o Fir,

F8 = vm —¥£—1¢2F+-————1§3f , F9- v -:;1133f4-————1§2F,
2 |y Vx, 2 | x, Jxs

(4.11)

where each FF is a function of 8, and 6, or of x,=e¢?.

A special case of a — 0

It is useful to consider the case of a —» 0 where the S-matrix is of the
diagonalized form (1, —1, 1, 1) from Eq. (2.19). Let us compute F and Ff(; In
terms of the solution of the Watson equation *,

. X 0
FPr=1, F7"=sinh—, 4.12
bb tF S ) ( )
the FFs can be written as

0
Fo(xy, x3) =K, (xy, x,) and  F3(x,, x,) =K (%, x;) sth.
(4.13)

Since K should have the im pole (or at x, = —x,) and K(8,+ A, 0,+A)=
K(#,, 0,) because the spin of @ is zero, we can find

0
Folxy, x,) =2mm? and  Ff(x,, x,) =27m’ sinhE. (4.14)

Here we fixed the normalization factor as mm? by comparing with the perturbative
computation using Eq. (2.4).

After finding these, one can derive the other FFs simply using Eq. (4.11) as
follows:

FgF(xl, x,) =2mm?x,, Fb@ff(xl, x,) = 2mm3/r—. (4.15)

i
One can check that the spins of @ and @ can be found correctly as + 2 under

the rapidity translation. These FFs are consistent with perturbative computation.

* This solution is not unique in the sense that one can multiply any even function of 9 satisfying
flim+ 0) = f(im — 0). If we include these functions in the prefactor K, one can define F™" uniquely.
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For general a

For general cases, we should diagonalize the S-matrix first. It turns out that the
eigenvalues of the S-matrix of the F =0 sector (bb and ff) are complicated and it
is hard to find the integral representations. Instead, we consider F = —1 (bf and
fb) sector first. The S-matrix is easily diagonalized by the eigenvectors

1 1
I+>="\/?(|b1f2>+lf1b2>)’ |_>=7—2—(|b1f2>_|f1b2>)’ (4.16)

with eigenvalues

= dt ot
s+(9)=exp[f0 —f4(1) smh;},
o dt T
S_(6)= —exp[j(.) Tf_(t) smh—ﬂ_—i], (4.17)
with
Fot) = (1 —cosh #)(1+cosh({1—2]al)t)) . cosh( (1 2|a|)t)'

sinh?¢ cosh ¢

(4.18)

From these integrals, F™" in the basis of |+ ) and | — ) can be obtained as

=dt f,(1) .zér]

Frin= exp - in?—
* o ¢ sinh ¢ 2

oo hé wdt f_(1) 6t 1
min= cosh—e — in“-—1, :
- 2PV T sinn 0 2 (4.19)
where we chose a normalization such that

F,—»1 as a—0. (4.20)

For numerical computations, we list expressions of F ‘f“ which converge fast in
Appendix B.
Now we consider FFs of @ in the following form:
FOr(xy, x) =K, (x4, xz)FTi", F?F(xl’ x3) =K_(xy, xz)FTin’ (4.21)

and similarly for @ in terms of K ,. These K, and K, can be determined from
the spins of the operators and symmetric properties of the states under the
exchange, |+ ) = |+ ) and | - ) = —|— ) under x; < x,, as follows:

_ 11
K,=A(fx, +x,), K,—B ﬁi—\/f)

where the constants A4, B can be determined by taking the a — 0 limit and
comparing with Eq. (4.15).

(4.22)
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Now rotating back to the on-shell states one can find

(Fmin_FT'm> Fmin+ FT'm
3/2[\/2 4 > + \/)Tz ( + > )

FF(xy, xy) =2mm

’

B 1 Fmi"—FTin 1 Fmin+Fr_nin
FIS‘F(xl, xz) = _27Tim3/2|:F‘(+ﬁ2—) + vx?“z“)
1 2

(4.23)
Also from Eq. (4.11) one can obtain other FFs,
Fmin+ FTin) Fmin_FTin 0
Fo(xy, x,) =2mm? (iL_ + ( - )cosh— ,
2 2 2
(4.24)

Fmin+ Fmin 0
Z%Sinh— .

F(x,, x3) =27m 5

We checked these FFs using the first-order perturbative computations. FFs for
other components of the energy—momentum tensor can be written down by just
multiplying P_/P_ to the above FFs.

4.4. Spectral sum rule

The C-theorem, first introduced by A.B. Zamolodchikov, plays an important
role in the study of off-critical models [39]). The C-function, describing a degree of
freedom of the 2D models, connects smoothly two renormalization group (RG)
fixed points as the length scale of the theory increases from UV limit to IR. For
some specific models like the perturbed minimal CFTs by the least relevant
operator with positive coefficient, the renormalization group (RG) flow connects
two RG fixed points corresponding to two adjacent minimal CFTs [40]. This RG
flow will end up at the massive point with C = 0.

This theorem can be neatly expressed in the following integral of the two-point

correlation function of the trace of the energy-momentum tensor following Cardy
[41]:

3 o
AC = Efm>gd2x x2(O(x)0(0)) =[O du Cy(p, A),
6 1 .
Cu, A) = ?Elm[[dzx e“p"‘(@(x)@(O))] . (4.25)

Expanding the correlation function in terms of intermediate on-shell states, the
spectral density function C, can be expressed in terms of the FFs by

12 ,
Cl(/““’A)ZEZ|<Ol@(O)Ia>I 8%(q = Pa)» (4.26)
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where p, is the energy-momentum vector of the multi-particle state a and the
vector q is defined as g = (u, 0).

For the massive theory, the sum rule of AC effectively gives the UV central
charge since C;p vanishes. Although one needs the infinite number of the FFs to
compute it rigorously, there are many evidences that the sum in Eq. (4.26)
converges very fast for the massive theories [7-10]. With this observation, one can
compute the UV central charge using the two-point FFs of @ quite accurately. In
next stage, we will compute this numerically using the FFs of the SShG model
derived in the previous section.

4.5. Sum rule for the SShG model

The two-point contribution to the sum rule becomes
12 . de, do,

co- S[T2 Y

H T a,az

X &(m cosh 8, +m cosh 8, — n)8(m sinh 8, + m sinh 6,)

3 » d6 2 2

_ 6 _ Orng _

e e [1F0,- o) +|F20.- 0)[7], (4.27)
with the FFs given in Eq. (4.24).

For the special case of @ = 0 where the SShG model becomes free with a boson

and fermion, one can insert Eq. (4.14) into Eq. (4.27) and using
w df 2 » sinh?¢ 1
- Pl A
o cosh'd 3 0 cosh*s 3
one can easily find C = 2.

For the generic value of a we integrate numerically using the regularized
expressions for the F, in Appendix B. Using these we list AC @ for several values
of the coupling constant in Table 1. This shows a good agreement with the UV
central charge C = % The convergence of the SShG model seems slow compared
with the sinh-Gordon result [9]. This suggests in the SShG model one arrives at the

2
Fa(?az(el’ 02)‘

Table 1 .

The first two-particle form factor in the Sum Rule of AC = 2AC

B2/4w o AC®

. 0.001 0.9993
= 0.005 0.9953
% 0.01 0.9902
= 0.02 0.9800
5 0.03 0.9697
5 0.05 0.9495

1
3 0.1 0.9093
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strong coupling region earlier than the sinh-Gordon glodel as one can see from the
fact that the limit of the SShG coupling constant is 82/8m = 1 while B2/87 =11in
the sinh-Gordon model.

5. Conclusion

In this paper we obtained two results on the N =1 SUSY integrable models.
The first one is the computation of the UV central charges from TBA method. The
non-diagonal TBA of the SShG and SYL models has been rigorously derived from
the essential observation that the N =1 SUSY models can be identified with the
eight-vertex free fermion models. These TBA equations produced correct UV
central charges.

The second result is two-point FFs of the SShG model using the FF axioms.
Here the difficulty arising from the non-diagonal scattering theories has been
avoided from the SUSY relations of the FFs. The spectral representation of the
C-theorem showed that two-point FFs can give good approximations in the infinite
sum of the intermediate states even in nondiagonal theories.

Our results suggest some interesting directions to proceed further. Actually, we
notice that a wider class of N =1 scattering theories are belonging to the
eight-vertex FFMs which will be reported in separate publication [42]. The rela-
tionship between these SUSY models and the cight-vertex FFM may have some
deep structure because the FFMs seem to have interesting hidden symmetries [43].
In particular, it has been noticed recently that the FFMs have a hidden quantum
group symmetry [44]. It would be interesting to see how this quantum group
symmetry will be related to the N =1 supersymmetry in the trigonometric limit.

In this paper, we could not say much on the general FFs of the theories. The
solution of the FF bootstrap equations are very difficult and are limited to only a
few simplest diagonal theories. We can reduce, however, the non-diagonal boot-
strap equations to the level of diagonal theories by diagonalizing the inhomoge-
neous transfer matrix. It will need some more work to solve these reduced
bootstrap equations completely.
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Appendix A

Inversion relation for the Free Fermion Model

We follow Felderhof to diagonalize the transfer matrix of the FFM [30]. We
want to point out, first, the difference of our derivation from the lattice model
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computation. The first difference is that we want to diagonalize the inhomoge-
neous transfer matrix. This difference often introduces much difficulty for the
computation. However, this difficulty can be avoided by the second difference,
which is that we are working with the FFM at the critical point. With this
advantage, we can derive the inverse matrix of the FFM transfer matrix and,
furthermore, express it using the original transfer matrix with a slight change in the
rapidity u.

It is convenient to re-express the Boltzmann weights (3.1) in terms of the
o-matrices,

R(8) = A(0) B(9) Al
A=a,0ctc”+b,oc7a", B=dot+co™,
e . (A2)
C=co"+do™, D=b_oc 0 +a o o".
Then, the transfer matrix becomes
N
T(ul6,,...,8y) =Tr2[nR(u —05)}. (A3)
i=1

Now we define a new transfer matrix 7, corresponding to new Boltzmann
weights defined by

a,=-b., bi=a,, c¢'=c and d'=-d. (A.4)

In the same way as before, one can express 7, by

N Ay(0) By(9)
T(ulby,....0y) =T, [TR(u—0)|, R(8)=1". ,
l(ul 1 N) 2|:i1j[1 1( l):| 1( ) C1(0) D1(0)
(AS)
where
A, =-b,otc"+a, o c", B, =—do'+co,
s R (A.6)
Ci,=co"—do, D =a oto"—b_o7o".

One can check that these new Boltzmann weights again satisfy the free fermion
condition (3.3).

The next step is to show that TT, a 1. For this purpose, we multiply the two
matrices,

N

T(u)Ty(u) =Tr2[ﬁRi] Trz{ﬁRl,i] = Tr2®2[nRi®R1,i
1

i=1 i=1

: (A.7)

i=
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Defining the 4 X 4 matrix R, ® R, ; as S, one can find a similarity transformation
S:=X,8,X;! where §! is of triangular form. The X and §’ are given by

1 1
0 ﬁ W 0
X cosh ¢ 0 0 —sinh ¢
—sinh ¢ 0 0 cosh ¢ |’
1 1
0 ﬁ - ﬁ 0
M+ * * *
) 0 F_o* 0 *
S = 0 0 F.o E (A.8)
0 0 0 M_

where M ,, F, and ¢ are given in Egs. (3.11) and (3.12). We did not specify the
unnecessary non-vanishing components ().

The most important observation is that tanh ¢ becomes just a constant for the
N =1 supersymmetric theory. This means one can make all the S, in the trace of
triangular form by the same similarity transformation X. Therefore, T, = Tr, 'l §;
and from Eq. (A.8) one can derive

N N
T(u)Ty(u) = 1:[1M+(u —6)+ l:IIM-(M —0,)

N N
+F(]—[F+(u—0i)+l_[F‘(u—()[))J, (A9)
i=1

i=1

with F =Tl o/ is either 1 (bosonic) or —1 (fermionic).
Now, consider a translation u — u + iw. Under this the Boltzmann weights of
the SShG model change,

a,—> —az, b, —by, c>d and d— —c. (A.10)

Again this satisfies the free fermion condition. Now, the transfer matrix with
translated rapidity can be expressed in terms of Ry(u —6) = R(u + im — ) by

N A B
. 2 2
T(u+im)=Tr,|[[R,(u—16)], R,= , (A.11)
i=1 ¢, D,
where
Ay,=—a,ctc +b, 070", B,=—-co"+do,
S LI (A.12)
C,=do"~co™, D,=b_oc o —a_o o".

From Eq. (A.6), one can notice that

A,=-D,, B,=-C,, C,=—-B, and D,= —A,. (A.13)
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Considering the R-matrices as 2 X 2 matrices, the R; and R, are related by
R,= —0"R0",
where ¢* is the usual Pauli spin matrix. This gives
T(u+iml0,....00)=(-1)"T,(ulb,,....8y), (A.14)
and from Egs. (A.9) and (A.14), the inversion relation Eq. (3.10).

Appendix B
Regularized expression for the form factors

For the numerical computation we can rewrite F ;‘i" in Eq. (4.21) as follows:

F1™(6) = C+(6’)[klil1 Gi(a, 0)[Hy(a, 6)] H]

wdt o,
X exp /(; Tf ( t) 27} (B.1)

sinh ¢

with C, =1, C_(#) = cosh 16 and
P.(2lal+1, 6)°P(0, 6)°

Grl(a 0) = P(1,0)*Py(2]al, 0) P(2] @l +2,6)’
6/2) i/em
Pk(x,9)=[ 1 (k+(1+x)/2) (1+ (k+(1-x)/2) )] ’

(B.2)

_ 6/(2m) - 0/2m) "
Hk(a’e)_[ i (2k+(2|al+3)/2)] [H (2k—(2|a|—1)/2)] ’

and the exponents are given by

(1 —cosh t)(1+cosh((1—2al)t))D,(t)
2 sinh?¢

. cosh((1 —2]al)r) e™*

fit(a, 1) =

3

cosh ¢

with D) =[n+ 1 n+2)—-2n(n+2)+n(n+1)e *]e 2"
If one choose n =0, this reduces to Eq. (4.19). For the fast convergence, one
can increase #n although the final expression is independent of n.
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