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Abstract

We study on-shell and off-shell propertiesof the supersymmetricsinh-Gordon and
perturbedSUSY Yang—Lee models using the thermodynamic Bethe ansatz and form
factors.Identifying thesupersymmetricmodelswith theEight Vertex FreeFermionModel,
we derive an inversion relation for theinhomogeneoustransfermatrix and TBA equations
and get correctUV results.We obtain two-point form factorsof the traceof the energy—
momentumtensor using the Watson equationsand their SUSY transformations.As an
application,we computetheUV central chargeusing theseform factors and thespectral
representationof the C-theorem.

1. Introduction

For 2D integrable field theories S-matricesare purely elastic, all incoming
momentaare conservedand multi-particle scatteringamplitudesare factorized
into a productof two-particle S-matrices.TheseS-matrices,in turn, shouldsatisfy
Yang—Baxter equationswhich often determinethe S-matricescompletely along
with unitarity and crossingsymmetry[1]. The S-matrix providesessentialtools to
understand2D field theories.First of all, the S-matrix gives information on the
UV behaviourof the theory by relating the Casimirenergyon the cylinder to the
central chargeof the correspondingUV conformal field theory (CFT) [2]. This
programknown as thermodynamicBethe Ansatz (TBA) [3] has provided consis-
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tencychecksfor many factorizablescatteringtheorieseitherwith local lagrangians
or without them such asperturbedCFTs [4].

S-matrix plays an importantrole in off-shell physics as well. It can be usedto
determine off-shell quantities such as correlation functions by computing the
matrix elementsof anoperatoron the basisof the on-shellparticles.Theseobjects
known as form factors (FFs)may be computedexactlyusingonly the S-matrices
and particle spectrum(bound states)as input [5,6]. With exact FFs correlation
functionsaregiven by an infinite sumover intermediateon-shellstates.This form
factor approachhasthe advantagefor the computationof correlationfunctionsof
massive integrable models that the infinite sum over all intermediatestates
convergesveryfast.For manycases,upto two-pointFFs give quiteaccurateresults
on off-shell quantities[7—10].Furthermore,the two-point FFs can be related to
some exact non-perturbativeinformationsof the underlying theories,such as the
wave function renormalization [5,121and the UV central chargesthrough the
spectralrepresentationof the C-theorem[8,13,9].In this sense,without complete
solutions of the FFs one can still extract non-perturbativeoff-shell informations
from the FFs.

While the TBA analysis or the FF computation can be relatively simple for
diagonalscatteringtheory, which hasno massdegeneracy,non-diagonalscattering
theoriesentail much more complicacy.By non-diagonalwe meantheorieswith
different types of particles of the same mass for which the scatteringof two
particles can occur in more than one channel. Most of the interesting 2D
integrable field theoriessuch as the soliton scatteringtheories, theories with
internalgaugesymmetries,andsupersymmetrictheoriesbelongto this class.

For the non-diagonaltheories, the equationsfor the TBA and FFs are ex-
pressedin termsof monodromyandtransfermatrices.To solvethe equations,one
needsto diagonalizethesematrices. It is remarkablethat with sometechnical
differencesthe sameproblemis oftenmet in the studyof lattice models[14]. In the
lattice model the Yang—Baxterequationsare to be satisfied to constructinfinite
numberof conservedchargesthrough the commutingtransfermatrices.Partition
functions and free energiesare expressedin terms of the eigenvaluesof the
transfermatrices.Due to this common feature, it is often quite useful to connect
2D field theorieswith lattice models.

There are two types of the models in the lattice and continuumwhich are
connectedwith eachother.The first one is the so-calledvertextype; the statesare
assignedon the lines which form a lattice. For the square lattice, eachvertex
consistsof four lines and an assignedBoltzmannweight dependingon the four
statesof the lines [14]. Theselinescorrespondto the world-linesof incoming and
outgoingparticlesin thescatteringtheories.While someof thesevertexmodelsare
associatedwith field theorieswith local lagrangians,thereremainmanyvertex-type
lattice modelsstill to be relatedto 2D integrablefield theories.

The second type is the interacting-round-facemodels [15]. The Boltzmann
weightsare assignedon eachvertexon the squarelattice,dependingon the heights
of four faces.As a specialcase,if the heightsare restricted,oneobtainsrestricted
solid-on-solid(RSOS) type of models.This wide classof lattice modelshas been
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related to 2D CFTs. Due to the conformal invariance,the correspondinglattice
modelsare at the criticality. Many exact results including correlation functions
havebeenobtainedusingthe CFT techniques.This identification canbe continued
in the off-critical region. Without the conformal symmetry, the off-critical RSOS
modelsare associatedwith CFTs perturbedby relevantoperators[16—19].Again,
S-matricesof the perturbed CFTs are given by the Boltzmannweights of the
RSOSmodels.

The best known exampleis the relation betweenthe six-vertexmodel and the
sine-Gordon(SG)model. The SGmodel hassoliton andantisoliton spectrumand
the S-matrix can be associatedwith the R-matrix of the Slq(2), affine quantum
group [181.The Boltzmannweightsof the six vertex model are the sameas the
S-matrix elementsafter identifying the up and down arrows assignedon each
vertexline with the soliton and antisoliton. In addition,quantumgroup reduction
of the SG model correspondsto the RSOS lattice model obtained from the six
vertexmodel.The TBA analysisof thesemodelshavebeendoneby diagonalizing
the inhomogeneoustransfermatricesof the six-vertex[21—23]and RSOS models
[24].

The completeFFs of the SG model have been obtainedby Smirnov using
quantum inversescatteringmethods,providing the only known examplewith the
completeFFsfor non-diagonaltheories.Basedon this information,Smirnov found
axiomsfor the FFs to satisfy [6]. Therefore,the problem to find completeFFs is
reducedto solve theseaxiomsfor a given theory. However,solving theseaxiomatic
equationscompletely is very difficult evenfor diagonalscatteringtheoriesexcept
for a few simplest ones such as Ising, Yang—Lee, and sinh-Gordonmodels
[7—9,11].The problem becomesmuch more complicatedfor the non-diagonal
cases.As an initial step to the problem,we will concentrateon two-point FFs.
Two-point FFs canbe determinedrelatively easily by diagonalizingS-matrix and
evaluating the FFs using the Watson equations[51.For the supersymmetric
theories,detailscanbe further simplified dueto the SUSY relationsbetweenthe
FFs. As stressedbefore, the two-point FFs havemany useful informationson the
underlyingtheories.

In thispaper,we want to applytheseframeworksto the N = 1 supersymmetric
(SUSY) theories. The S-matricesof many SUSY models have been obtained.
TheseS-matriceshavethe following factorizedform [19,26]:

S(o)=S~(o)®S
0(o), (1.1)

where the first factor S~carriesthe SUSY indices andcommuteswith the SUSY
chargeswhile the secondone S~is the S-matricesof the models without the
SUSY. So far, severalSUSY integrablefield theoriesandperturbedsuperCFTs
are solved and their S-matricesare derived.An interestingaspectof the SUSY
modelsis that theseS-matricescommutingwith SUSY chargesare identified with
Boltzmannweightsof some lattice models.

For example, for the N= 1 SUSY CFTs perturbed by the least relevant
operator,~ which commuteswith SUSY chargeswith central extensiondue to
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the topological charges,is related to the RSOS weights correspondingto the
tricritical Ising model [25]. For the N = 2 SUSY models, the first factor is
identified with the Boltzmannweights of the six-vertex model [20,22]. These
relationswith lattice models are importantnot only for the lattice-field theory
correspondencebut for actualsolutionsof the models.

The N = 1 SUSY sine-Gordon(SSG) model has beensolved in a unconven-
tionalway. Its soliton S-matrix hasbeenderivedfrom theresultson theperturbed
superCFTsby the least relevantoperator[191.The SUSY part of the SSGsoliton
S-matrix is given by the RSOS tricritical Ising model S-matrix while S~is the
ordinarysine-GordonS-matrix.The S-matricesof theSSGboundstates(breathers)
have been derived from multi-soliton scatteringamplitudes[27]. In particular,
since the lightestbound statesare forming a supermultipletof the fundamental
fields appearingin the SSG lagrangian,the lightest breatherS-matrix of the SSG
model can be analytically continuedto get the S-matrix of the supersymmetric
sinh-Gordon(SShG)model.This S-matrix is identical to the one derivedfirst by
ShankarandWitten by explicitly requiringthe commutativitywith SUSY charges
[281.Besides,the SSGmodelwith only the lightestbreatherin the spectrumcanbe
understoodasperturbedsuperCFTs, the SUSY Yang—Lee(SYL) model [26,271;
the simplestnonunitarysuperCFT perturbedby the leastrelevantoperator.This
model includes only one supermultipletof on-shell states and the S-matrix is
identicalwith that of the SShGmodel.This S-matrix is our startingpoint.

Thesemodelswith N = 1 SUSY without a central extensionwill be identified
with the general eight-vertex modelswith an external field. If the Boltzmann
weights of the generaleight-vertexmodel satisfy a “free fermion” condition, the
model is exactlysolvableandthe free energywasderivedfirst from dimer method
[291and later diagonalizing the transfer matrix [30]. Also, this model has been
identified with the generalXY-spin chain model with a magneticfield [31]. This
relation with the lattice model will be very useful in our derivation of TBA
equationsfor the SShGmodel. It turns out that the SShGmodel is at the critical
pointof the XY-spin chain model.

We organizethis paperin the following way. In the next section,we write down
the lagrangianof the SShGand SSG models and derive the energy—momentum
tensorsupermultipletandtheir relationsunderthe SUSYtransformation.Also we
presentthe S-matricesof the models. In sect. 3, we use TBA analysis for the
supersymmetricmodelsto derive the UV central charges.In sect. 4, we compute
theFFs of the SShGmodel usingthe WatsonequationsandSUSY relationsof the
energy—momentumtensor.With exact two-point FFs, we derive the UV central
chargeof themodel usingthe spectralrepresentationof the C-theorem.

2. N = 1 SUSY integrable model and factorizable S-matrix

Wepresentthe energy—momentumtensorsupermultipletof the N= 1 SSGand
SShGmodel andthe S-matrix of the theories.
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2.1. Lagrangian andenergy—momentumtensor

We startwith a lagrangianof a generalN = 1 SUSY,

~‘~P) =~D~DcI+iW(’I)~102, (2.1)

with a scalarsuperfieldc1,

cP(x, 0) = 4 + iO~Ji+ i~O0F, (2.2)

and D and D, the covariantderivatives,

a
Da= ~ +j(y~0)ad~. (2.3)

The Grassmanvariable 0 is a Majoranaspinor ~. In termsof the componentfields,
onegets

= + + W”(~)}~+ ~[w’(~)]
2. (2.4)

The SSGmodel is a particularcaseof Eq. (2.4) with the superpotential

W(ct) = —~cos(f3cP). (2.5)

The SShGmodel is the samesuperpotentialwith the purely imaginary coupling
constant f3 = if3. The N = 1 SUSY algebrais generatedby the conservedcharges
Q

1 and Q2,
Q~=P~,Q~=P_ and {Q1, Q2} =0, (2.6)

with the light-cone momentadefined as ~ E ±P. Thesechargesact on the
componentfields by

Q~t-.=~fi~, Q~i/i1=a~4, Q1~f~2=F, 27

Q24~=i~i2,Q2~~2=—a4,Q2~I1=—F,
with F = — W’(q~).

Integrability of the SSG and SShG models is establishedbecausethey are
equivalentto Toda theorybasedon the twisted super affine Lie algebraC

t2~(2)
[32—34].The equationsof motion of the SSG theory can be rewritten as super
zero-curvatureconditions.An infinite numberof conservedchargesat the classical
level were derived[35] andcheckedto be preservedat the lowest-orderquantum
corrections[36].

The energy—momentumtensorsupermultipletcanbe expressedby [371
J~= [(~i~ — W’(~I~))y~DJ~], (2.8)

* Dirac matricesarey°= (_?~ y1 =
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or in light-conecoordinates,

D1~Pa4i
—W’(~)~PD1’Ii‘ D~a_~i , (2.9)

with x~=~(x1 ±x0)and a~=a,±3g.In termsof the componentcurrents,

0~T~ Xi+
— + 2i a T — + i0102 — , (2.10)

2± 1 —± X2±

one getsthe energy—momentumtensorof the SSGmodel,

T~~=~[(a±~)2 + i~i8+~i], T~= 1[(3~)2 — i~2a~2],

1m
2 im_

T~.=T~= ~ —~-sin2/3~— —~--l/nhscos /34, (2.11)

andits superpartner

m

~ ~~2+ —ij-11’i sin /34s~
m (2.12)

~‘
2_111’2a_4)’ ~1’~_= l1fJ~ sin J34.

Including an appropriatenormalization factor of 4ir, we define the following
notationfor the SUSYenergy—momentumtensor:

T= ~ T= 4irT__, 0 = 4irT~_, (2.13)

andtheir SUSY partners,

TF=
4~I’I+, TF4’~T~”

2_,
0F4~’1-’ 9F4~T’I’2+. (2.14)

They are relatedto eachotherby the SUSY transformation

Q
1TF= —2iT, Q1T= —~3+TF, Q1~

9F= —2i0, Q
10= ~~3±0F,

Q2TF=2iT, Q2T= ~
3_TF, Q20F=2j0, Q

29= 2

3—6F•

(2.15)

2.2. On-shellparticle statesand S-matrix

If the coupling constant of the SSG model in Eq. (2.5) becomespurely
imaginary,we havea simplestN = 1 SUSY field theory, namelythe SShGmodel.
Since the potential is not periodic, the soliton spectrumdoesnot exist any more
and the spectrumconsistsof only the fundamentalparticles appearingin the
lagrangian,one scalarand fermion supermultiplet.We will denoteon-shell states
of theseparticlesby b(0)> and I f(o)) with a rapidity 0 which is related to the
momentumby E = m cosh 0 and P= m sinh 0.
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The SUSYchargesdefinedin Eq. (2.6) canact on on-shellstatesas(see subsect
4.2)

QiIb(0))=~e0~/2If(0)),

Q21f(0))= -W~e°~
2Ib(0)~, Q

2Ib(0))=~/~e°~
2If(0)).

(2.16)

It is easyto seethat this satisfiesN = 1 SUSY algebra,Eq. (2.6). The action of
SUSY chargeson multiparticle on-shellstatescanbe easily workedout usingthis
andthe anticommutivityof ~ and the fermion.

The exact S-matrix of the SShGmodel was derived using the Yang—Baxter
equation,unitarity and crossing symmetry along with the commutativity of the
SUSY chargesandthe S-matrix [28]. In the basisof two-particle on-shellstatesin
the order of I b

1b2~,I f1f2)’ I b1f2), I f~b2~“, the S-matrix has beenobtainedto
be(0 = 01 — 02):

2i sin a~ i sin air
1+ 0 0

sinh 0 cosh ~0

i sin air 2i sin air
1— 0 0

cosh ~0 sinh 0
S(0)=Y(0) .

i sin air
0 0 1

sinh ~0

i sin air
0 0 1

sinh ~0

(2.17)

with an arbitraryconstanta which will be relatedto the coupling constant/3 of
the SSG model in a moment.The prefactorY(0) is neededto makethe S-matrix
unitary andcrossingsymmetric.The following integral form will be useful later:

sinh ~0

sinh -~0+i sin(Ialir)

~*dtsinh(IaIt)sinh((1—IaI)t) Ot
Xexp —f — 2 i sinh— . (2.18)

o t cosh (it) cosh t in

With Y(6)= Y(iin — 0) and a factor of i arising in the crossingrelation for the
bb —sff channel, the S-matrix of Eq. (2.17) is crossing symmetric.

To determine the constant a we shouldrefer to anotherderivationof the SSG
breather S-matrix. Using the SSG soliton S-matrix, one cancomputefour soliton
scatteringamplitudes.By taking boundstatepoles of the incoming and outgoing

* We use a shortnotation b1b2~ Ib(O1)b(62)~,etc.
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soliton—antisolitonpairsone canderive the S-matricesof the SSGbreathers[271.
In particular the S-matrix of the lightestbreathersis the S-matrix of the funda-
mentalparticlesof the SSGand SShGmodels:

5(0) =Y(0) ~ ~S~(°),

where

sinh 0 + i sin(2air)

S~(0)= sinh 0 — i sin(2air)’

2i sin air sin air
1+ 0 0

sinh 0 cosh 40
sin air 2i sin air

—1+ . 0 0cosh ~0 sinh 0
=

t sin air
0 0 1

sinh 40

i sin air
0 0 1

sinh 40

(2.19)

The factorS~is the lightestbreatherS-matrix of the SGmodel.The constanta in
Eq. (2.19)is given by the coupling constantof the SSGmodel [27],

y /3
2/4ir

a=—= . (2.20)
16ir 1 — J32/4ir

For the SShGmodel with /3 = ifi’ (/~ real), this constantreducesto

(2.21)
1 + /32/4ir

and — -4 < a <0.
Two S-matrices,Eqs.(2.17) and(2.19) are equivalent.The sign differencein the

ff —s ff channelis explainedbecauseall particlesare consideredas bosonsin Eq.
(2.19) by including the exchangefactor —1 arising in ff—÷ff in the S-matrix
element. In this convention,the crossing relation is satisfiedwithout any extra
factorbecauseall particlesarebosonic.Besides,for the SShGmodel with a <0,
the S~hasno pole in the physicalstrip. Therefore,S~is nothingbuta CDD factor
andcanbe removedby minimality assumption.For the SSGmodel,however,with
a coupling in 0 <a < 4 (/32 < 4ir/3) the S~does have a bound state pole
correspondingto the secondbreather.

For a complete description of the SSG model, one should include all the
S-matricesof the solitonsandbreathersaswasdonein ref. [27]. Dependingon the
valuesof the coupling constantof the SSG model, the spectrumof the bound
stateschanges.In particular,if the coupling constantis in therangeof 4 < y/8ir <
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1, only the lightest bound states can exist along with the soliton andantisoliton in
the spectrum. If the solitons are truncated from the theory keeping only the
lightest bound states, the scattering theory becomesperturbedCFT by the least
relevant operator. The UV CFT is the SUSY extension of the Yang—Lee model
[26,27].The S-matrixis given by Eq. (2.19).

3. Thermodynamics of the N= 1 SUSY models

In this sectionwe use the TBA method to derive the centralchargesof N= 1
SUSY models.For the purposewe first show that the S-matricesof N = 1 SUSY
modelsare the Boltzmannweightsof so-called“free fermion” eight-vertexmodel.
Usingthis observation,we canderivethe TBA equationsfrom inversionrelationof
diagonalizingthe transfermatrix. We apply the TBA equationsto both the SShG
and SYL models perturbedby the leastrelevantoperatorand derive correctUV
centralcharges.

3.1. Freefermion models

After the celebratingsolution of the symmetric eight-vertexmodel by Baxter,
Fan and Wu obtained an exact expressionof the free energyfor the general
eight-vertexmodel with an external field if the Boltzmannweights satisfy some
additional constraint,named the free fermion condition [29]. They called this
model “Free Fermion” model(FFM) althoughthe nameis slightly misleading.The
model turnedout to be highly non-trivial andinteracting.

We startwith the Boltzmanweightsof the generaleight-vertexmodel:

a~ 0 0 d

0 b~ C 0
R= 0 c b_ 0 (3.1)

d 0 0 a

for the following vertexconfigurations:

-5 ‘ ,- -. — — —

a~ a_ b~ b_ c C d d
(3.2)

If R(0)satisfiesthe Yang—Baxterequationand the free fermion condition

a~a_+b~b_=c2+d2, (3.3)
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andif the following combinationsof the Boltzmanweightsare independentof the
rapidity:

F— 2cd h—~~
— a~b_+a_b~’ — 2(a~b+a b~) ( . )

the transfermatrix T commutes;[T(u), T(v)] = 0. Dueto thiscommutativity,there
exist an infinite number of conservedcharges including a hamiltonian of the
correspondingone-dimensionalspin-chainmodel.This hamiltonianhasbeeniden-
tified with that of the XY-model with a magneticfield,

(3.5)

where u ~=
4~(0~x±juY) with a conventionalPauli o~matrices.

To identify the FFM with N = 1 SShGmodel,we rewrite the S-matrix of the
SShGmodel, Eq. (2.19), by rearrangingthe two-particle basis. In the order of
I bb), I bf), I Jli), I ff>~ the R-matrixof Eq. (2.19)becomesthe generalform of the
FFM with

2i sin air i sin air sin air
b =1 c= d= (3.6)

— — sinh 0 ± sinh -40 cosh 4o
ifwe identify t and —s with Ib) and ~ and ~— with If>*.

It is an easy exerciseto check that theseweights satisfy the free fermion
conditionEq. (3.3). Also, the constantsF and h become

F=sin air, h= —1. (3.7)

Sinceh = — 1 is a critical point of the XY-model, the SShGmodel correspondsto
thecritical pointof the generaleight-vertexmodel with free fermion conditionand
with vanishingelliptic modulus.

3.2. Diagonalization of transfer matrix

The periodicboundarycondition for the non-diagonalscatteringtheoriesbe-
comes

(3.8)

where A is an eigenvalueof the transfermatrix T(0) which is definedby

T(0IOi,...,0N)~

= ~ LS~”(° — 0~)S~’~(0—02)... ~“~A’N(~ — ON), (3.9)
a ta)

actingon VaN.

* The Boltzmannweightsin Eq.(3.2) becomethe S-matrix elementsif we adoptthe conventionthat

time flows from the bottom-left to the upper-right(i’).
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Weusean inversionrelationof the transfermatrix to derivethe eigenvalues.As
explicitly derived in AppendixA, the inversion relation for N = 1 SUSY models
looks like:

T(uIOl,...,ON)T(u+iirIOl,...,ON)

= (- 1)~[flM+(u - 9~)+ flM(u - O~)

N N

+F FJF÷(u— O~)+ flF(u — O~) , (3.10)
i=1 j=i

where the fermion index operator F is either + 1 for the bosonic stateor — 1 for
the fermionic one.

The functions appearing in Eq. (3.10) are expressed in terms of the Boltzmann
weightsas follows:

M~=a+a_—d2, M_= a~a—c2,

F~=sinh24 a~b~+cosh24 a_b—2 sinh 4i cosh q~cd,

F_= —cosh24 a÷b~—sinh24 a_b_+ 2 sinh 4. cosh 4 cd, (3.11)

and

2cd

tanh(2~)= a~b~+ab sin air. (3.12)

Using Eq. (3.6) one can find

sinh(0 + iair) sinh(0 — iair)
M=-± sinh o sinh 4o

cosh(0 + iair) cosh(0 — iair)
M=-

cosh o cosh -o

cosh(40 + iair) sinh(40 — iair)
— cosh 0 sinh 4e

sinh(0 + iair) cosh(9— iair)
F_= — . (3.13)

sinh o cosh 4e
From theseexpressionsonecannotice that underthe changeu —.~ u + iir

M±—sM±and ~

therefore, T(u)T(u + ii) = T(u + iri)T(u + 2iri). This means

T(uIOt,...,ON)=T(u+2iriIOl,...,ON). (3.14)
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These matrix relationscanbe easily transformedto equationsof the eigenvaluesof
the transfer matrices; A(u I O~,. . . , ON) is a 2iri symmetric function,

A(uIOl,...,ON) =A(u +2iriIOi,...,ON), (3.15)

and the inversion relation is nicely factorized,

A(uIOI,...,ON)A(u+iriIOl,...,ON)

— f~cosh((u—6,)+ilalir) FI~I sinh((u—O~)+ilalir)

— i=1 cosh((u—O~)) + i=i sinh((u—O~))

cosh(4(u—01)—ilalir) +FE sinh(-4(u—01) iIaIir)
j1 cosh((u — os)) jl sinh((u —

(3.16)

Since A(u) is a 2iri-periodic function with poles at u =

0k and u = 0k + iir, it
can be completely fixed by the location of zeroes on the strip in the complexplain
of —in < Im[u] <in and —~ <Re[u] <Qo. Also from the fact that A(u) becomesa
constantas u —, ~, we canfind that

N sinh(4(u—zfl) sinh((u—zfl)
A(u10

1 ... 0 )=const.x fl
k=1 sinh(4(u—Ok)) cosh(4(u—Ok))

(3.17)

where the 2N zeroes{z~}and {z~)located on the strip will be determinedas
functionsof the 0,.

We definedthe zeroesin the way that z~and z~comefrom the first and
secondfactors of the r.h.s.of Eq. (3.16), respectively.Therefore,they satisfy

N tanh(4(z~—O~)+iIaIir)—

i=i tanh(+(z~—Of)) — —F,

N tanh((z~—O.)—iIaIir)

tanh(4(z~—0,)) = —F. (3.18)

The solutionsof theseequationscanbewritten in termsof realvariablesXk in the
following way:

zk =xk—ilalir, xk—ilalir+iir,
(3.19)

zk=xK+ilalir, xk+ilalir—lir,

where a real number Xk satisfies

~tanh(4(xk—0~)—4iIaIir) 320

j=i tanh((xk—0I)+iIaIir) — . (
Out of four possiblechoicesof zk-~for k = 1,.. ., N from Eq. (3.19), only two

choices are allowed. This can be understood easily if one considers the limit of
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I a I —s 0. The Boltzmannweightsareeither + 1 or — 1 from Eq. (3.6). This means
the transfer matrix is just a constant matrix without any dependenceon the
rapidities. Now from Eqs. (3.17) and (3.20), the only possibility for the eigenvalues
of the transfer matrix to be independentof Cl is when (xk) = {O~} and when
z~—z~= ±iir for all k. For example, if one chooses a (z~,z~)=(Ok—

I a I ir,
0k + i I a I in) pair for some k as I a I —s 0, the eigenvalue will get a term like

tanh((u — ~k))~ Obviously, this eigenvalueshould be excluded for the constant
transfermatrix. This leavesonly two choicesfor the zeroes:

(zr, zfl=(xk—ilalir, xk+ilalir—iir)

or (xk—ilalir+iir, xk+ilalir). (3.21)

From the productform of Eq. (3.16), one notices that if we chooseone pair of
zeroes in Eq. (3.21) the other pair becomes zeroes of A(u + in). Since one can
choosethe zeroesbetweenthe two possibilitiesfor eachk (k = 1, . . ., N), we can
construct

2N different eigenvaluesin this way. Also, one canproof that Eq. (3.17)
satisfiesEq. (3.16)becauseif we divide the r.h.s.of Eq. (3.16)with A(u)A(u + iir)
using Eq. (3.17) the final expression has no poles and zeroes while it is bounded.
This means the ratio shouldbe a constant.

Using all these results, the eigenvalues are compactly expressed by

‘~k~ Xk)EN=Const.X N . Ek= ±1, (3.22)
l~Ii=1 sinh(u —°~)

with

0 ilalir 0 ilalir

A~(O)=sinh(~ ~ 2 ) cosh(~~ 2 )~ (3.23)

L~
iir -iIaJ7r

o S 0 S 0 S 0 5 0 S

S 0 5 0 5 0 5 0 S 0

—ik~I7r

Fig. 1. The zeroesz~on thecomplex 0 plane.
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= + 1 correspondsto the first choice in Eq. (3.21)andc = — 1 to the second(see
Fig. 1). The realzeroesXk are determinedby Eq. (3.20).

3.3. ThermodynamicBetheansatz

From Eq. (3.8) and Eq. (3.22), the PBC equationbecomes

elms1~ofl ~ flA~(OI x1,...,xN) = 1, (3.24)

and the constraint equation(3.20) in the limit N, L —s ~ are expressedby the
densities p for the allowed states,p’ for the occupied states,P~for f = + 1
zero-state,and P_ for c = — 1. In termsof thesedensities,onegets

2irp(O) =m cosh 0 +fdO~[p1(0~)~~(0— 0’) +P~(O’)’I~’+(0—0’)

—0’)],

2irP(0) = fdO’ p
1(0’)DT(O — 0’), (3.25)

where

a Y(0) a
cl5~(O)= ~Im ln sinh ~ ~~(O) = ~Im In A±(0),

11 1.1 a tanh~0—
5za in

~T(O)=——ln . (3.26)
, ao tanh(0+iIaIir)

Using Eq. (3.23) and A_=Ck+)*, one can easily show that the kernelsare
relatedby

1 a sinh 0—i sin lain
~T(0)

2~ (O)= —2cP (0)=——ln , (3.27)
+ — i ao sinh O+i sin lain

which is nothingbut the kernel of the sinh-Gordonmodel. We will denotethis
kernelby ‘P. Also, we caneliminate P_ from the first equation of (3.25) using the
secondoneand P=P~+P_to rewrite it as

2irp(0) =m cosh 0

+fdo~[pt(O~)[~y_ ~J’ * ~](o —9’) +P~(0’)D(O—0’)],

(3.28)

with convolutiondefinedby [f * g](0) = f~ (dO’/2ir)f(9 — 0’)g(O’).
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The TBA equations,therefore, can be expressedby

mR cosh 0 = ~(0) + ([ci~~—~I * ~] * ln[1 + e~])(O)

* ln[1 + e~’])(0),
0 =~(O)+ (‘1 * ln[1 + e~])(0), (3.29)

in terms of the pseudo-energiese and ~‘ definedby

pt(O) e~0) P±(0) e~8~
_____= ________ ______ = . (3.30)
p(O) 1 + e~~’ P(0) 1 + e~°~

3.4. Central charges of the SShG model

The TBA equationsin the UV limit (R —* 0) can be easily solved. In particular
the ground-stateenergycanbe expressedby

E(mR) — Xa Ya , (3.31)
irRa=

0i l+Xa l+Ya

where x0 = exp[—E(0)], x1 = exp[—~’(0)] and y0 = exp[—E(~)]= 0, y1 =

exp[—~’(ce)] = 1. The ground-stateenergy is related to the UV central chargeas
R —* 0 through the finite-size correction by E(R) —(ir/6R)(C— 12(~1~+ ~i()))
where ~ and 4~are conformaldimensionsof vacuum.

Furthermore,the pseudo-energiesbecomeindependentof the rapidity around
0 = 0 upto 0 — ln(mR) and the TBA equationsare reducedto mere algebraic
equations,

x0(1+x0)(l+x1), x1=(1+x0)’~, (3.32)

with

oodO rd0

a = f~—_(’~—~I * ‘i~)(O), b = fcP(o). (3.33)

For the SShG model, a = 0 and b = 1 from Eqs. (3.23) and (3.26) and f~
(dO/2in)cP~(O)= , ft,. (d0/2ir)ci’(9) = 1, f~ (dO/2ir)[’D * ‘I’](O) = [f~ (dO/
2ir)t(0)]

2 = 1. Using these values, the solution of Eq. (3.32) can be found easily as
x
0 =x~= ~. This gives the UV central charge(~=z10 = 0)

6 3

C= —~-[~“(i)+~‘(1) —~()j=
This is correct UV central charge of the SShG model with a boson and a fermion.

3.5. Centralchargesof the SUSYYang—Leemodel

As explainedin theprevioussection,onecantruncateall solitonsfrom the SSG
multi-soliton Hilbert space to have only breathers. In particular, for the coupling
constant a = 4’ only the lightest breatherand its superpartnercan exist in the
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spectrumwith the S-matrix given in Eq. (2.19) [27]. This is the SYL model
perturbedby the leastrelevantoperator.

The fundamentaldifference from the SShGS-matrix is that becauseof a> 0
S~(0)is no more CDD factor. It has a pole which is identified with the particle
itself. If we denotethe particlesas B and F, the bootstraprelationsare

BB(FF)—B-sBB(FF), BF(FB)—sF-sBF(FB).

Except this difference, all the TBA analysis of the SShG model is equally
applicableto the SYL model.

The SYL conformal theorycanbe constructedas a cosetCFT given by

SU(2)K® SU(2)
1

K=2 and L+2=4.
SU(2)K+L

The central chargeof the model is C = — ~. Due to the non-unitarity of the
model, the lowest conformal dimension is not zero. To determinethe lowest
conformaldimensionof themodel, we refer to the generalformulaof the general
cosettheories.The primary fields of the cosettheoryhavethe conformaldimen-
sions given by the following formula[38]:

1(1+2) 12 (rp’—sp)
2—(p’—p)2

~rs4(K+2) K~ 4Kpp’

p’=p+Kq, (3.34)

q

with the restrictions

0<l<K, 1<r<p—1, l<s<p’—l, l=Ir—smod2Kl.

Forthe SYL model with the valuesof K = 2, p = 2, p’ = 8, onefinds that only
r = 1, 1 = 0, 1, 2, and s = 1, 2, 3, 5, 6, 7 are allowed. The minimal conformal
dimensionarises when (8 — 2s)2 is minimized, i.e. with s = 3. Therefore, the
minimal conformaldimensionof the SYL model is ~ = = — 4.

Now we computethe Casimir energyof the model using TBA. Notice that the
only changefrom the SShGTBA is that the kernel‘i~~in eq.(3.29) getsan extra
factor — (a/aO) ln S~(0)due to S~in Eq. (2.19).With a > 0 this introducesextra
— 1 in the exponent a in Eq. (3.32) to make a = — 1. With this change the
algebraicequationsnow become

1 +x
1

x0= 1’ x1=1+x0, (3.35)

andthe solutionsare x0 = ~ and x1 = 1 + ~ Eq. (3.31) gives C~24~mjn

6 i+V~ 3
=—,

in

2 i+v~ 2+V~ 4

as expected.
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4. Form factorsof the supersymmetrictheories

In this section, we derive FFs of the SShG model from the S-matrix. We
computeone-pointFFs first to fix overall normalizationandtwo-point FFs using
the Watsonequationsand SUSY relationsof the FFs.Using theseFFs we derive
the UV centralchargeof the SShGmodel from the spectralrepresentationof the
C-theorem.This provides a consistencycheck for the FFs and shows the fast
convergenceof the FFs expansionsof correlationfunctions.

4.1. Two-pointform factors

FFs are matrix elementsof a hermitian operator ~9 between vacuum and
in-coming statesandcan be expressedby

F a*(°i’~. , 0,,) = KU I ~‘(0) I a1(01),. . ., a,,(0,,))1~, (4.1)

where I a(0)) denotes an on-shell particle state of type a with a rapidity 0
(0~> 02> ... > 0,,). TheseFFs satisfy somebasic axioms. While the generalFFs
dependon quite complicatedrecursionrelations and are difficult to solve, the
situation becomesquite simple for the two-particle states[61.The two-point FFs
canbe written in termsof two factors,

Faia2(Ot, 02) =Kaia2(Oi, 02)F~(01 —02), (4.2)

where F
tm1” satisfiesthe Watsonequation[5] without any pole,

Fa”i’~(O) = Fam~(—0)S~(0), FaT,~(iir —0) =FaT~(~ir+ 0), (4.3)

and the prefactor Kaa(Ot, 02) has all the required poles and operator depen-
dence. Note we omitted a phase factor from the fermion exchangeoperator
treatingall particlesas bosonic.

Fm’~canbe determinedfrom the following steps.In the basiswhich diagonal-
izes the S-matrix, Eq. (4.3) becomesa simple functional relation. Then, usingan
integral representationfor the ith eigenvalueof the S-matrix, onefinds

oodt . Ut
S~(0)= exp f —f~(t)sinh—

0 t in!

- ~dt f(t) 9t
—sFm111=exp I — ‘ sin2— (4.4)

~o t sinh0 2ir

where ê = in — 0. Rotating backto the original on-shell two-particle states,one
finds the Fm1~.The function K(0

1, 02) shouldbe determinedby the otheraxioms.
It is a symmetricfunction of therapidities if a1 = a2 andhasan in-pole if ~ = a2.
The asymptoticbehaviourat largerapidities is related to the spin of the operator
andthe overall normalizationof the FFs is fixed by the one-pointfunction.
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4.2. One-pointform factorof the SShGmodel

We work out one-pointfunction of the SShGmodel to fix the normalizationof
the generalFFs. From the Fourier transformationof the elementaryfields:

dk 1
..&( \ — 1...... _____ 1”x + b~ —,kxl
~ ~J 2~V~k

0~k k J’

dk 1 (4.5)
ç~(x)= f~~—[fku(k) eikx +f~v(k) e~x]

no

with u~= v andwith the commutationrelations

(fk’ f~~}= 2nk0~(k— k’), [bk, b~]= 2nk0ö(k — k’). (4.6)

On-shellSUSY is determinedfrom the SUSYtransformationof the elementary
fields, Eq. (2.7) and ib(O)> =bt(0)i0) and If(0)) =ft(O)IO>:

Q11f(0))= -i ib(0)), Q1Ib(9))=i~v1(0)If(0)),
v~(0)

(4.7)

Q2lf(0)>~ r- - Ib(0)>, Q2Ib(0)>=W~v2(0)lf(0)>.
v2v2(O)

From U = (0 I Q,,[4(U) I f(0))], onegets

Q,,if(0))= —if~u,,(0)Ib(0)), (4.8)

andcomparingthis with Eq. (4.7), onecan find the spinors

m m

v~(0)= —i~ e°~, v2(O) =

This gives the SUSY transformationof on-shell statesgiven abovein Eq. (2.16).
Combining this andEq. (4.5), wefix the one-pointfunction as follows:

1 m ie°~
2

(0I~(0)Ib(0)>~, <0i~,,(0)If(0)> ~(e~2)~ (4.9)

4.3. Form factorsof the SShGmodel

We computetwo-point FFs of the trace of energy—momentumtensorsandtheir
SUSY counterparts,0 and 0F (OF), given in Eqs. (2.13) and (2.14). These
operatorsareof particularinterestfor their role in the C-theorem.First,we derive
SUSYrelationsbetweenthe FFsusing Eq.(2.15).

From 0 = (0 I Q,,[~I a
1(01)a2(02))],onefinds a relation

(OI Qa[t5~’] I al(01)a2(02)>= — ( — 1)’~~~(0 I I Q,,[a1(01)a2(02)]>, (4.10)
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with F 1 for fermionic and 0 for bosonic. This gives the following relations
betweenthe FFs:

F~=~ç[F+~F~F], ~

~ 1 1 V~-i 1
F°— ___FOF+ ___FOF F°= — ____F°F+~~~F°F

bb — 2 ,/~fb bf ‘ ~ 2 ~ bf /— fb

(4.11)

whereeachFF is a function of 01 and 02 or of x1 = e°’.

A specialcaseof a —~ 0
It is useful to consider the case of a —s 0 where the S-matrix is of the

diagonalizedform (1, — 1, 1, 1) from Eq. (2.19). Let us computeF~and In
termsof the solutionof the Watsonequation~,

- - 0
F~”=1, Ff7~=sinh~-, (4.12)

the FFs canbe written as

F~(x1,x2) =Kbb(xi, x2) and F~(x1,x2) —Kff(xt, x2) sinh~.

(4.13)

Since K should have the in pole (or at x1 = —x2) and K(01 + A, 02 + A) =

K(01, 02) becausethe spin of 0 is zero,we canfind

F~(x1,x2) =2nm
2 and ~(x

1, x2) =2nm
2 sinh~. (4.14)

Herewe fixed the normalizationfactor asnm2 by comparingwith theperturbative
computationusingEq. (2.4).

After finding these,one can derive the other FFs simply using Eq. (4.11) as
follows:

F~F(x
1,x2) = 2nm3/2~, F~F(x1,x2) — 2nm

3~2~. (4.15)

Onecancheckthat the spinsof 0F and~9F can befound correctlyas ±4- under
the rapidity translation.TheseFFs are consistentwith perturbativecomputation.

* This solution is not uniquein the sensethat one can multiply any even function of 0 satisfying

f(j~r+ 0) = f(i~r— 0). If we include thesefunctions in the prefactorK, one can define Ftm1’ uniquely.
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For generala
For generalcases,we shoulddiagonalizethe S-matrixfirst. It turns out that the

eigenvaluesof the S-matrixof the F = 0 sector(bb and if) are complicatedandit
is hardto find the integral representations.Instead,we considerF = — 1 (bf and
Jb) sectorfirst. The S-matrix is easilydiagonalizedby the eigenvectors

1 1
1+) =~~(Ib1f2)+If1b2)), I— )= —~rrr~(Ibif2>_Ifib2>), (4.16)

with eigenvalues

~dt Ot
S~(0)=expf —f~(t)sinh-—

0 t in!

~dt Ot
S_(0) = —exp f —f_(t) sinh— , (4.17)

0 t iT!

with

— (1— cosh t)(1 + cosh((1—21 a I)t)) cosh((1—21 a I)t)
J ±~) sinh

2t ± cosh t

(4.18)

From theseintegrals,F”1” in the basisof I +) and I —) canbeobtainedas

- tmdtf~(t) ót
F”’”= exp I — sin2—+ Jo t sinht 2n

- 0 tmdtf(t) Ot
F~111=cosh—expf — . sin2— , (4.19)

2 ~j t stnht 2n

wherewe chosea normalizationsuchthat

F~—s1 as a—sO. (4.20)

For numericalcomputations,we list expressionsof F~”’ which convergefast in
Appendix B.

Now we considerFFsof 0F in the following form:

F~F(x
1,x2) =K±(x1, x2)Fr, F!F(xi, x2) =K_(x1, x2)F~”, (4.21)

andsimilarly for
0F in termsof K~.TheseK ± and K~canbe determinedfrom

the spins of the operators and symmetric propertiesof the statesunder the
exchange,1+ )—‘I+) and I—) —~—I—) underx

1 ~-~x2,as follows:

K±=A(~±~), K_±=B(~=±~=)~ (4.22)

where the constants A, B can be determinedby taking the a —~ 0 limit and
comparingwith Eq. (4.15).
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Now rotating backto the on-shellstatesonecan find

(Fmmn_Fmuhl) (Fmlfl+Fmifl)

F~(x1,x2) = 2nm3/2[~~ ± 2 — + ~ ± 2 —

1 (Fmin_Fmml) 1 (Fmi~~+Fmi~~)
F,~.F(x1,x2) = —2mm

3”2 ± 2 — + (N
2 + 2 —

(4.23)

Also from Eq. (4.11)onecanobtain other FFs,

(Fmhnl+Fmuhl) (Fmin_F~) o
F~(x~,x2)=2irm

2 + 2 - + ± 2 cosh~

- - (4.24)
~ 0

Ff°f(x
1,x2)=2mm

2 2 sinh~.

We checkedtheseFFs using the first-order perturbativecomputations.FFs for
other componentsof the energy—momentumtensorcan be written down by just
multiplying P~/P_to the aboveFFs.

4.4. Spectral sum rule

The C-theorem,first introducedby A.B. Zamolodchikov,plays an important
role in the study of off-critical models[391.The C-function,describinga degreeof
freedom of the 2D models,connectssmoothly two renormalizationgroup (RG)
fixed pointsas the length scaleof the theory increasesfrom UV limit to IR. For
some specific models like the perturbed minimal CFTs by the least relevant
operatorwith positive coefficient, the renormalizationgroup (RG) flow connects
two RG fixed pointscorrespondingto two adjacentminimal CFTs [40]. This RG
flow will endup at the massivepoint with C = 0.

This theoremcanbe neatlyexpressedin the following integralof the two-point
correlationfunction of the traceof the energy—momentumtensorfollowing Cardy
[41]:

~C= —f d2xx2(O(x)@(O))=fd~ C
1(~,A),4n ~‘p>~ 0

61
C

1(.r, A) = —~—~Imfd2x e_i~)x(E)(x)E)(O)> . (4.25)
in /_L P

2F2

Expandingthe correlation function in terms of intermediateon-shell states,the
spectraldensityfunction C

1 canbe expressedin termsof the FFs by

(4.26)
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where p,, is the energy—momentumvectorof the multi-particle statea and the
vector q is definedas q = (~, 0).

For the massivetheory, the sum rule of LIC effectively gives the UV central
chargesince CIR vanishes.Although one needsthe infinite numberof the FFsto
compute it rigorously, there are many evidencesthat the sum in Eq. (4.26)
convergesveryfast for the massivetheories[7—10].With this observation,onecan
computethe UV centralchargeusingthe two-point FFsof 0 quite accurately.In
next stage,we will compute this numerically using the FFs of the SShG model
derivedin the previoussection.

4.5. Sumrule for the SShGmodel

The two-point contributionto the sum rule becomes

Ct2~— 12

1d01 dO2 ~, F° ‘0 0 ~ 2— 3) 2 ~..s a,a]~. 1’ 2/
P~ 2(2n) aI,a2

>< ~(m cosh01 +m cosh 02 JL)~(msinh 0~+m sinh 02)

3 ~d0 2 2

= 8n2m4I~cosh4O[ ~(0, 0)~+~Ffl(0,—0)~j, (4.27)

with the FFs given in Eq. (4.24).
For the specialcaseof a = 0 wheretheSShGmodel becomesfree with a boson

andfermion, onecaninsert Eq. (4.14) into Eq. (4.27) andusing

dO 2 ~oo sinh
20 1

Jo cosh4O 3’ Jo dOcosh4O 3~

onecaneasily find C = 4.
For the genericvalue of a we integrate numericallyusing the regularized

expressionsfor the F~in AppendixB. Using thesewe list ~ for severalvalues
of the coupling constantin Table 1. This shows a good agreementwith the UV
centralchargeC = 4. The convergenceof the SShGmodel seemsslow compared
with thesinh-Gordonresult [9]. Thissuggestsin theSShGmodel onearrivesat the

Table 1
The first two-particle form factor in theSum Rule of ~4C= 4LIC
~ a

0.001 0.9993

-~ 0.005 0.9953

0.01 0.9902
0.02 0.9800

0.03 0.9697
0.05 0.9495
0.1 0.9093
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strongcoupling regionearlier than the sinh-Gordonmodel as onecanseefrom the
factthat thelimit of theSShGcouplingconstantis /32/8m = 4 while /32/8m= 1 in
the sinh-Gordonmodel.

5. Conclusion

In this paperwe obtainedtwo results on the N = 1 SUSY integrablemodels.
The first one is the computationof the UV centralchargesfrom TBA method.The
non-diagonalTBA of the SShGandSYL modelshasbeenrigorously derivedfrom
the essentialobservationthat the N = 1 SUSY modelscan be identified with the
eight-vertex free fermion models. TheseTBA equationsproducedcorrect UV
central charges.

The secondresult is two-point FFs of the SShGmodel using the FF axioms.
Here the difficulty arising from the non-diagonalscatteringtheories has been
avoidedfrom the SUSY relationsof the FFs. The spectralrepresentationof the
C-theoremshowedthat two-pointFFscangive good approximationsin the infinite
sumof the intermediatestatesevenin nondiagonaltheories.

Our resultssuggestsome interestingdirectionsto proceedfurther.Actually, we
notice that a wider class of N = 1 scattering theories are belonging to the
eight-vertexFFMswhich will be reportedin separatepublication [42]. The rela-
tionship betweentheseSUSY modelsand the eight-vertexFFM may have some
deepstructurebecausetheFFMsseemto haveinterestinghiddensymmetries[43].
In particular, it hasbeennoticed recentlythat the FFMshavea hidden quantum
group symmetry [44]. It would be interesting to see how this quantum group
symmetrywill berelated to the N = 1 supersymmetryin the trigonometriclimit.

In this paper,we could not say much on the generalFFs of the theories.The
solution of the FF bootstrapequationsare very difficult and are limited to only a
few simplest diagonal theories.We can reduce,however, the non-diagonalboot-
strap equationsto the level of diagonal theoriesby diagonalizingthe inhomoge-
neous transfer matrix. It will need some more work to solve these reduced
bootstrapequationscompletely.
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Appendix A

In version relationfor the FreeFermion Model

We follow Felderhofto diagonalizethe transfer matrix of the FFM [30]. We
want to point out, first, the differenceof our derivation from the lattice model
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computation.The first differenceis that we want to diagonalizethe inhomoge-
neous transfer matrix. This difference often introduces much difficulty for the
computation.However, this difficulty can be avoidedby the seconddifference,
which is that we are working with the FFM at the critical point. With this
advantage,we can derive the inverse matrix of the FFM transfermatrix and,
furthermore,expressit usingthe original transfermatrix with a slight changein the
rapidity u.

It is convenientto re-expressthe Boltzmannweights (3.1) in terms of the
u-matrices,

A(O) B(O)
R(0) = C(O) D(0) (A.1)

A=a±u±u_+b+u_o~, B=do~+cu,
- + (A.2)C=co~+dcf, D=b_o~u+a_u cr

Then, the transfermatrix becomes

N

T(uiOl,...,ON)=Tr2 flR(u—01) . (A.3)

i=1

Now we define a new transfermatrix T1 correspondingto new Boltzmann
weightsdefinedby

a~=—b~, ~ ct=c and dt=_d. (A.4)

In the sameway as before, onecanexpressT1 by

N A1(0) B1(0)

T~(u101,...,ON) = Tr2[UR1(u — 0~)j~R1(o) = C1(0) D1(0)

(A.5)

where

A1= _b÷u±u_+a+u_o~, B1= —do~+co~,
+ - ± - - ± (A.6)C1==cu —du , D1=a_u ci —b_u ci

One can checkthat thesenew Boltzmannweights againsatisfy the free fermion
condition(3.3).

The next step is to show that TT1 ~ 1. For this purpose,we multiply the two
matrices,

N N N

T(u)T1(u) =Tr2 flR~ Tr2 flR~1 =Tr2a2 flR1®R1~. (A.7)
i=1 j=1 j~=1
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Defining the 4 X 4 matrix R~® R1~as S,, one canfind a similarity transformation
5 =X151X1’ where S~is of triangularform. The X and 5’ aregivenby

1 1
U U

cosh ~ U 0 —sinh q5
— —sinh4 0 U cosh~

1 1
0 ~

M+ * * *

0 F_crz 0 *

= U 0 F~o~ * (A.8)

0 U 0 M_

whereM~,F~,and ~ are given in Eqs. (3.11) and(3.12). We did not specifythe
unnecessarynon-vanishingcomponents(*).

The most importantobservationis that tanh ~ becomesjust a constantfor the
N = 1 supersymmetrictheory. This meansone canmakeall the S~in the traceof
triangularform by thesamesimilarity transformationX. Therefore,TT1 = Tr4 II S
andfrom Eq. (A.8) onecan derive

N N

T(u)T1(u) = flM~(u — 0~)+ JJM_(u — 0~)
i=i

N N

+F JJF±(u— 0~)+ flF_(u — 0,) , (A.9)
i=1

with F = U o~,Z is either 1 (bosonic)or — I (fermionic).
Now, considera translation u —s u + in. Under this the Boltzmannweightsof

the SShGmodel change,

a~—~—arn, b~—sb-~,c-sd and d—s —c. (A.1U)

Again this satisfies the free fermion condition. Now, the transfer matrix with
translatedrapidity canbe expressedin termsof R2(u — 0) = R(u + in — 0) by

T(u + in) = Tr4UR2(u - 0i)]~ R2= (~2 ~), (A.11)

where

A2= ~ 112= +du,
± — + — — + (A.12)C2=du —cci , D2=b_u ci —a_u ci

From Eq. (A.6), onecan notice that

A2= —D1, B2= —C1, C2= —B1 and D2= —A1. (A.13)
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Consideringthe R-matricesas 2 x 2 matrices,the R1 and R2 are relatedby

R2= _ciXR1UX,

where ci’ is the usualPauli spin matrix. This gives

T(u +imIOl,...,ON) = (_1)NTI(u101,...,ON), (A.14)

andfrom Eqs.(A.9) and(A.14), the inversionrelationEq. (3.10).

Appendix B

Regularizedexpressionfor theformfactors

For the numericalcomputationwe can rewrite Fr”’ in Eq. (4.21) as follows:

F~”’(O) =C±(0)[flGk(a~ O)[Hk(a, 0)]±1J

rdt f~~(a, t) Ut
Xexp f — . sin

2— , (B.1)
0 t sinht 2m

with C~=1, C(0) = cosh ~4O*and

I a I + 1, 0)2Pk(U,0)2
Gk(a 0)=

1~k(1’ 0)2Pk(2IcrI, O)Pk(2laI+2, 0)

U/(2n) 0/(2n) k(k+1)/4
Pk(x,0)= I+ (k+(1+x)/2) 1+ (k+(1—x)/2)

(B.2)

1/2 1/2
0/(2n) O/(2n)

Hk(a,0)= 1+ (2k+(21a1+3)/2) 1+ (2k—(2IaI—1)/2)

andthe exponentsaregiven by

± (1—cosht)(1+cosh((1—2IaI)t))D,,(t)f-(a t)=
“ ‘ 2 sinh2t

cosh((1—21 a I)t) e4”
± cosht

with D~(t)= [(n + 1)(n + 2) — 2n(n + 2) + n(n + 1) e4’] e2”’.
If one choosen = U, this reducesto Eq. (4.19). For the fast convergence,one

can increasen althoughthe final expressionis independentof n.
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