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We derive the first complete S-matrices of the supersymmetric sine-Gordon theory for a
generalvalue of coupling constant The spectrum includes not only solitons and antisolitons but
also their bound states . The S-matrices are computed based on the soliton S-matrix which was
obtained from the S-matrix of perturbed superconformal unitary model. After constructing a
superconformal non-unitary model from the coset CFI' with admissible representations, we
derive the S-matrices of the perturbed superconformal non-unitary modelby restricting the SSG
S-matrices . We generalize these results to the theories with the fractional supersymmetries .

1. Introduction

Various two-dimensional field theories have the remarkable property of possess-
ing an infinite number of conserved charges, which implies the theories have no
particle production and scattering is elastic. This property ensures the integrability
of the theories. The multi-particle scattering amplitudes are decomposed into the
products of two-particle scattering amplitudes which can be solved exactly using
the factorization equation (or Yang-Baxter equation) and the general principles of
analyticity, crossing symmetry and unitarity.
The exact S-matrices were derived for the sine-Gordon (SG) theory, O(N)-sym-

metric non-linear cr-model, the Gross-Neveu model [1,2], and other integrable
quantum field theories [3] by solving the Yang-Baxter equation and imposing
on-shell symmetries with which the S-matrices were supposed to commute. For
most cases, the on-shell symmetry determines the S-matrix unambiguously*. While
this on-shell symmetry is immediately determined for the elementary particles
which are created by quantum fields in the lagrangian, the symmetry for the
solitons is not easy to find and usually is conjectured based on the spectrum . For
the SG theory, on-shell symmetry O(2) is assigned because there are two asymp-

* Overall CDDfactorscan be always multiplied to the S-matrices.These factorsintroduceadditional
poles, hence new particles to the spectra . We will assume there are no CDD factors (minimal
solution) throughout this paper.
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totic particle states, a soliton and an antisoliton in the spectrum. As far as the
same symmetries are involved, the same S-matrices are obtained. For example,
the S-matrix for the SG solitons is the same as that of the massive Thirring
fermions [4] .
The factorizable S-matrix theory can be applied to supersymmetric theories. The

fundamental difference of supersymmetry (SUSY) from the other kind of on-shell
symmetries is that the ordinary SUSY algebra for the elementary particles is
extended by a central charge for the solitons [5]. The authors in ref. [b1 firsi
derived the exact S-matrices for the elementary particles of the supersymmetric
sine-Gordon (SSG) theory and SUSY O(N) non-linear a-model . The SUSY
algebra, therefore, did not include any central charge. Although this derivation did
not include the soliton sector, thus far from the complete solution of the SSG
theory, they demonstrated one remarkable property that the supersymmetric
S-matrices can be given as tensor products of two S-matrices, one of which is the
S-matrix of the non-supersymmetric model and the other is the S-matrix commut-
ing with on-shell SUSY. For example, the S-matrix of the SUSY O(N) model was
shown to be the direct product of the S-matrices of ordinary O(N) model and SSG
elementary particles . The second factor is commuting with SUSY . The longstand-
ing problem of finding the SSG soliton S-matrix has been recently solved by
studying perturbed conformal field theories (CFT) [7] .

Initiated by Zamolodchikov [81 th° perturbed CFT's by the least relevant
operator have been related to integrable field theories . The case studied in the
greatest detail is a special perturbation of the minimal model, represented by the
coset CFI` SUM, ® SU(2)L/SU(2),+L, by the operator of dimension (L + 1)/(L
+ 3). This model is an integrable restriction of the sine-Gordon theory [9-141. The
S-matrix of the SG theory [1] was shown to commute with the quantum group
symmetry 2lq[sl(2)] for which the SG soliton and antisoliton form a fundamental
(spin- 2) representation*. The multi-soliton Hilbert space can be decomposed into
irreducible representations with higher spins [11,14]. The deformation parameter
q is uniquely related to the coupling constani of the SG theory . For q a root of
unity, the decomposition to the higher spin is restricted up to a maximum spin . In
other words, the states corresponding to higher spin than this are truncated from
the Hilbert space . This restricted sine-Gordon theory (RSG) is identified with the
perturbed minimal model . The S-matrix of this theory, SRSG, is the restricted
solid-on-solid (RSOS) form of integrable lattice models . One remarkable property
of this S-matrix is that it is commuting with fractional on-shell SUSY duc to the
quantum group structure [14] . For the case of L = 2, which corresponds to the
tri-critical Ising model in the massless limit, this fractional SUSY becomes SUSY
with a central charge. The generalization of those results to the other unitary

* This quantum group symmetry has been recently derived from the lagrangian of the SG theory
using the perturbed CFT formalism [151.



C. Ahn /Supersymmetric sine-Gordon theory

	

59

models of coset CFT's GK ® GL/GK+L has been worked out [7]. The integrability
of these perturbed CFT's are established by relating them to certain restricted
integrable field theories using underlying quantum group structures.

Consider the most interesting case of G = SUM. For K= 1, this theory corre-
sponds to the integrable perturbation of the conformal unitary model and has
on-shell fractional supersymmetric charge Q(L' as mentioned above. Since the
perturbed coset CFT is invariant under duality transformation K H L, the S-matrix
of the perturbed coset CFT SU(2)K ® SU(2)L/SU(2)K+L should commute with two
independent fractional SUSY charges Q(K) and Q(L). This determines the S-matrix
uniquely as a following factorized form:

S(K. L) = SR
S(KG)

®SRSG

For K= 2, the theory is the superconformal unitary model perturbed by a
dimension (L + 2)/(L + 4) operator and can be identified with the restricted
supersymmetric sine-Gordon theory (RSSG). The S-matrix for the RSSG, eq. (1.1),
is conjectured to be the restriction of the SSG S-matrix. Then the S-matrix for the
SSG solitons is derived by reversing the logic of the SG theory, that is, by undoing
the restriction of the RSSG theory . Since the restriction depends only on L and
since SR(1)SG is the restricted SG soliton S-matrix, the S-matrix for the SSG solitons
should be

S SSG - SRSG ®SSG)

The level L is related to the coupling constant of the SSG theory . The spectrum of
the SSG theory for the integer value of L contains only the SSG solitons. The
dynamics of the SUSY sector is totally included in the first S-matrix in eq. (1.2),
reminding the general feature of factorization .
The SSG S-matrix (1 .2) is not complete, however . First of all, we do not know

what are the on-shell SSG solitons. To compute the SSG soliton S-matrix explic-
itly, we should know the SUSY charges of these solitons. Secondly, the SSG theory
should include not only solitons but also bound states of solitons, referred to the
SSG breathers . The breather-soliton and breather-breather S-matrices are neces-
sary to be complete. In this paper, we will solve these problems and apply the
results to other integrable models including perturbed superconformal non-unitary
model .

This paper is organized as follows. In sect . 2 we briefly repeat the derivation of
the SSG soliton S-matrix (1.2). After defining on-shell SUSY soliton states, the
explicit S-matrix for the on-shell SSG solitons will be obtained. In sect. 3 we
extend L to a general real number . For this value of L, the SSG breathers are
shown to exist and their scattering amplitudes with the SSG solitons and SSG
breathers are computed by considering multi-soliton scattering processes. We will
show as a special case that the S-matrix for the SSG breathers of the lowest mass
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is exactly the same as that of the elementary particles of the SSG theory [6] as
mentioned earlier. This identification confirms not only our results but also the
validity of the SSG soliton S-matrix (1 .2) which our derivations are based on . We
apply our results on the SSG theory to other interesting integrable theories in sect .
4. The perturbed coset CFT with a rational level L is related to superconformal
non-unitary CFT for which we provide the complete S-matrix for the first time .
The primary fields of the non-unitary model are constructed with "admissible"
representations of SU(2)'s with rational levels . Although we work with the non-
unitary model, the massive field theory is perfectly well-defined as far as the
S-matrices are unitary because the physical states ofthe massive theory are not the
primary and descendent fields but the solitonic states. The method we use to get
these results seems equally true for K> 3. The SSG theory generalizes to the
fractional supersymmetric sine-Gordon (FSSG) theories with general couplings.
The FSSG breathers can be obtained as bound states of the FSSG solitons . The
restrictions of the FSSG theories generate perturbed general non-unitary CFT's
with fractional SUSY. The construction of the non-unitary CFT's is done using the
coset CFT's with admissible representations. In sect . 5 we conclude with a few
comments .

2. The S-matrix of the SSG solitons

In this section we first review the known results on the SG, RSG and SSG
theories. The perturbed superconformal unitary model [7] is identified with the
RSSG theory and the SSG S-matrix is conjectured from this result . After the SSG
soliton spectrum and SUSY transformation are worked out in detail, the SSG
soliton S-matrix will be written down .

2.1 . THE PERTURBED SUPERCONFORMAL UNITARY MODEL

The action of the supersymmetric generalization of the SC theory (SSG) is given
by [16]

1

	

(1 2 1

	

mz

	

m
S=

ßz
jdxdt' 2(ao) +-ia

	

1+
4

COSZ<p-
2

(COsp)~0
1

,

	

(2.1)

where A is a real scalar field and 4 is a Majorana fermion . ß is a coupling
constant of the SG theory and m is the mass parameter denoting the deviation
from the massless theory.
The SSG theory is integrable because it is equivalent to Toda theory on the

twisted super affine Lie algebra C( Z)(2) [17-19]. The equation of motion of the
SSG theory can be written as a super zero-curvature condition. An infinite number
of conserved charges at the classical level were derived [20] and seem to be
preserved at the lowest order of quantum level [21] .



As is the case of the ordinary SG theory, the SSG theory can be related to a
special perturbation of superconformal minimal model . To show this, we express
eq . (2 .1) in terms of superfield in two-dimensional euclidean space-time,

where covariant derivatives in the superspace coordinates z, B (and z, B) are

We can identify the superfield fi = 0 + 00 + Bar + BBF with the field of the
supersymmetric Feigin-Fuchs (FF) construction for the superconformal model by
normalizing the fields by

The central charge of the superconformal model and background charges are

2( 1

	

(L+2)(L+4))'

	

��
&+2)(L+4) '	(2.5)

The screening operators are given by
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1
S=
1

fd2zd 2e[D4'Dfi+mcos-P ] ,

	

(2.2)

D=ae +ea.,

	

D=aà+Baz .

	

(2.3)

V,= f dz dOexp(ia+eFF(z,8»,

a
- L+4

	

a--- L+2Vr:

	

-L+2' L+4 *

The primary fields of the superconformal minimal model are

(2 .4)

(2 .6)

<Pm,w = exp(ra~ . .OFF) +

with 1 < m < L+ 1, 1 < n < L + 3 . The Neveu-Schwarz sector is given by n - m =
even; the Ramond sector by n -m = odd. Since we require om- of the operators in
the potential of eq. (2 .2) to be a screening operator, we can express the constant ß
in terms of a parameter in the CFT. Expanding cos 4) = `-[exp(M + exp(-M],
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we take the exp(-iq5) term to be a screening operator. Therefore, we identify

+2
-i ß

	

=ia_- ß
=
L

	

(2.8)
747

	

47r

	

L+ 4

We can represent the superconformal unitary model with the coset CFT SU(2)K
SU(2)L/SU(2)K+L, K= 2. The primary fields (2 .7) of the superconformal unitary
model are constructed from the integral representations of SU(2)'s with integer
levels. This will be extended in sect. 4 to general Kand rational L for non-unitary
CFT's.
Since the screening operator has dimension 1, the part of the action that

includes only the free piece and the screening operator can be considered as CFT;
it is a super Liouville theory. The extra term in the action exp(ißoFF/ 4ar ) is
treated as a perturbation and is equivalent to the 4), . ; primary field of the
super-conformal minimal model. This field with the dimension (L + 2)/(L + 4) is
the perturbing operator which preserves the SUSY of the CFT. It must be
emphasized that the decomposition ofthe action (2.2) into a conformal piece and a
perturbation is partly heuristic. The action for the conformal piece is not sufficient
to encode the truncation of the Hilbert space one performs in the super FF
construction (projection of null vectors). Thus the spectrum of the perturbed super
CFT is not equivalent to the spectrum of the SSG, but must be obtained as a
restriction of it . Also, the ordinary (unrestricted) SSG theory does not have a
background charge and corresponds to c =3/2 in the massless limit.
As pointed out in sect . 1, the SSG theory is different from the SG theory in that

we do not know the SSG S-matrix in the beginning and hence within the quantum
group structure. Instead of starting with the S-matrix of the SSG theory, we start
with the S-matrix of the RSSG theory. To be consistent with the duality and the
results on the SG theory, the S-matrix of the RSSG theory is given by the direct
tensor product of two RSG S-matrices,

SRSSG(e) = SRSG2
)
(e) ®SRLSG(B) (2.9)

The deformation parameter of the quantum group Wn[sl(2)] associated SR( 1 )SG(0) is
q = -exp[-iar/(L + 2)] . And the SSG soliton S-matrix is obtained by unrestrict-
ing the RSSG theory as is given in eq . (1 .2). The consistency check that the RSSG
theory is the perturbed superconformal minimal model comes frym relating the
maximum topological charge which the primary fields in the CFT can have to the
maximum allowed spin for the RSSG theory due to the special value of q.

2.2. THE S-MATRIX FOR THE SSG SOLLTONS

As explained, we undo the restriction of the RSSG theory to obtain the SSG
S-matrix . In this procedure the factor SRsc is unaffected; however, the factor S(L)



The RSG spectrum consists of kinks IKab ) with a, b e (0, - 1 , 1), ja - bI =

	

. Byi
denoting the SG solitons with topological charge ±1 by JA ± ), the SSG states can
be expressed by IKb) = IK ab > ® JA ±), where the first quantum number carries
the SUSY charges and the second the topological charges .
The SSG is the S-matrix of the ordinary SG solitons 111,
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(2 .13)

satisfies U(6) = U(i-rr - 0) . We use the S-matrix convention shown in fig. 1 .

,q+,q -	sh(8-rr9/y) isin(8-rrz/y) , (2 .12)
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CROSSED CHANNEL OF (A)

Fig. 1. (a) The convention of the S-matrix. (b)Crossed channel of (a).
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becomes an ordinary SG soliton S-matrix. Since p2/47r = (L +2)/(L +
led to define a function y of the coupling ß as
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4), we are

z
y(ß)=81r(L+2)= 1

-ßl47r
. (2 .10)

The S-matrix of the SSG solitons with this parameter y is

SssG(8)
= SRSG2)(0) ®SsG(x = es~e/Y' 9 = -e-rs,z/r) . (2.11)
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Ka b(62)Kdo(9i )

K dc(9 2 )

	

K cb(Bl )

Fig. 2. The RSG scattering amplitude.

The SRS) is given as the RSOS form [14] (fig. 2)
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(2.14)

for the process IKda ,(01)> + IK Q , b (0 2 )> ~ IK dcl(02 )> + I Kczh(B,)> with a, = az = a
and c, = c 2 =c . If this condition is not met, the scattering amplitude becomes zero.
These spins are restricted to 0 <j < K/2. The q-number [n] is defined by

where q= -exp(-iir/K+2). This S-matrix is crossing symmetric Sá(B)=
Sad(iir - 0) if we define charge conjugation of kinks by

C(IKoh>) = Ixah>= IKha > . (2 .16)

The kinks JKab> have on-shell fractiona'. supersymmetry Q(K) which acts on the
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kinks by the following rule [14] :

(K)
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Similarly, Q(K) gives

X IKa ;a_(B1) . . . Ka;a + ,(9j) . . . Kah,aN+~(BN))

(2 .17)

Q

	

IKai_(e1) " . . Ka,aN+i(BN)) = - r_ e
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( A l Oaka
'~)Xa;

a, j=1

	

k=1

X IKajaS(e , ) . . .Ka~a+(8~) . . .KaNaN+l(eN))-

(2 .i8)

The coefficients X°', Xcb and Oad, Zá are expressed in terms of quantum 6 -j
coefficients [14,22] and defined up to gauge transformations Xa' -> E(a;c)Xa 6 ,
cad' - (E(a ;c)/E(b;d))Od, and similarly for X°h,Ód with any number E(a; c).

From now on, we concentrate on the case K=2 where Q(K) and C?*(K) satisfy
ordinary SUSY algebra with a central charge due to the topological charges of the
SSG solitons. The SUSY acts on the SSG states by

Note that these states need not be on-shell particle states which describe the
SSG solitons . To identify the on-shell states, we impose the condition that the
on-shell states contain both bosonic and fermionic states which the SUSY trans-
forms into each other. In addition to this, if we require that the charge conjugated
states of these on-shell states should also exist in the spectrum, we can identify the

QIKó;)=-iee/21K~+ ;), QIK1;;)=+ie-B/21K ;;),

QIK;;) = ie e/2IK(i :) , QIK;;)=±ie-"/2IKó_), (2 .19)

and on the charge conjugated states by

QIK+o)=ee/2IKó), QIK±o) = ±e-a/ 2IK~),

QIK� ) = -ee/ZIK+, ,), QIK+. 1)= +e-e/2IK±:) . (2 .20)
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on-shell SSG soliton states as follows:

IB± > =

	

{IK ,> + IK +,>},

	

IF±> =

	

{IK' > > - IKt,>} .

	

(2 .21)

The SUSY transformations for these states are

QIB±>=ie B / ZIF±>,

	

QIBf>=±ie-B/ ZIF±>,

QIF±)=-ieB/Z IB ±), QIF±)=Tie -9 / ZIB±),

QIB±>=ee / 2 1F±>, QIB±>=±e - B 1Z 1F±>,

QIF± >=ea/2 1B ± >, QIFt>=±e-B/ Z 1B ± > . (2 .22)

Then the SUSY charges satisfy

QZ =P=el , QZ =P=e -B , QQ+QQ=2T . (2 .23)

The central charge T is ± 1 corresponding to the topological charges of the SSG
solitons . The charge conjugations of the solitons are

C(IB± >) =
IB F

>, C(IF ± >) = IF+> . (2 .24)

The S-matrix SRSG in eq . (2 .11) is obtained to be

S
2rr~)2-e

/Z,f, - 1(ich4+sh0)

BB FF BF FB

BB 1 1 + i sh(9/2)
BF 1 1 + i sh(9/2)

ch(B/2) ch(B/2)

1 + i sh(8/2) 1 +i sh(B/2)
FF ch(B/2) 1 FB ch( B/2) 1

up)
2-

i iz~r-
~
( B B

i ch
4
+ sh

42ri

BB FF BF FB
x
~
BB (1 11 BF ( H 11

~

, (2 .25)
FF 1 H, FB 1 11
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where U'(0) is U(0) with y = 32-ír in (2.13) and B --- i7r - 0. Eqs . (2 .12) and (2.25)
give the S-matrix of the SSG solitons . It is remarkable that all the fermion-number
violating amplitudes vanish. This confirms that the on-shell states carry good
SUSY charges. The unitarity and crossing symmetry of (2.25) can be checked.

3 . The S-matrices of the SSG breathers
In this section we define the bound states of the SSG solitons, the SSG

breathers. The S-matrices for the SSG breather and soliton and for the two SSG
breathers are computed by studying the multi-soliton scattering amplitudes .

3 .1 . THE SSG BREATHERS

The SG soliton S-matrix (2 .12) has poles in the physical region 0 < Im 0 < 7r for
the soliton-antisoliton channel. Since poles of the S-matrix correspond to the
bound states arising from the given channel, these poles of the SG theory are
matched with the bound states of a soliton and an antisoliton, the breathers. The
mass spectrum can be computed from the poles of the S-matrix, which are at

nm � = 2m sin( 16
y) ,

	

(3.1)

where m is the soliton mass and set to be 1 . Since the SSG soliton S-matrix
contains the SG S-matrix and the other factor in the SSG S-matrix, S RSG , has no
additional pole, the poles of the SSG S-matrix are exactly the same as those of the
SG S-matrix. Like the SG theory, the nth bound state reaches the soliton-antisoli-
ton threshold when y = 87r/n, and when y > 8Tr/n it disappears from the spec-
trum converting into the virtual state . At y > 81r all bound states including the
lowest massive state, which is identified with the elementary particle of the SSG
theory, disappear from the spectrum . This condition for no bound states is
automatically satisfied with the coupling constant (2.10) for the positive integer L.
Therefore, the SSG spectrum consists of only the SSG solitons without any
breather for the positive integer L . In terms of the parameter /3 in (2.1), the SSG
threshold arises at ß 2/47r= 1/3 compared with the SG threshold ß 2/47r= 1/2.
Now, we relax this constraint on L and consider y as a general real coupling

constant. If the SSG theory is well defined at the special coupling, it should be so
whatever the coupling is. For this case, there should exist the SSG soliton bound
states, the SSG breathers, with the masses of (3.1) . These will carry two quantum
numbers, one from the two kinks states and the other from the SG breathers, like

1K obKbc )® 1A±A :~ i,	a,b,c=0� ,1 .

	

(3.2)

There exist six allowed two-kink states for the SSG theory . Any linear combination
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of these can be a candidate for the on-shell particles . To identify these on-shell
states, we impose the same condition as for the SSG solitons, namely that the SSG
breathers form the complete set of bosonic and fermionic states which trans-
form into each other under the SUSY transformation . In addition to this, we
require the on-shell states to be invariant under charge conjugation. The reason is
the following: Since we identify the SSG breathers of the lowest mass with the
elementary particles, which are composed of one real scalar particle and one
Majorana fermion, we need the whole spectrum of the SSG breathers to be either
real scalars or Majorana fermions . If the lowest massive states are real or
Majorana, all the other SSG breathers should be so because the masses ofthe SSG
breathers depend only on the SG sector .
We have found that only the following combination can form the complete set of

fermionic and bosonic states which are invariant under the charge conjugation
(2 .16) :

1o,(B)> =

	

lim
0, -0 2-ae�

1
(IKo_( 0 1)K ;o( 02)> + IK, :( 0 i)K, 1( 0 2)>) >

C2

	

2

1
;(0)>=

	

lim

	

(IK�o(0,)Ko (02)>+IK,,(0 , )K I ;(o2)>}~o,-e_ -. '1e,, -

	

-

(0)>=

	

lim

	

ta�
(IKo!(0,)K, 1(02)> - IK, ;(01)K2,o(02)>),

e,-o .--.ae� 2 -
2

	

- -

I ,,(0)>=
ó2m-

r2-
(IK;o(0,)K(~ ;(02)>- IK ,(0i)Ki ;(02)>J- (3 .3)

We defined the rapidity of the bound states to be 0 = (0, + 0 2)/2 and the phase
factor a� is

1+i
a,,= _2m_(eae� + i e-ae �) ,�

(3 .4)

where AO,, --- i7r-iny/8 and m� is the mass of the nth breather in eq . (3.1). One
can check that la,, 12 = 1 . The SSG breathers are direct product of these with the
breathers of the SG theory,

lo"' ) =Idb;,>0IB">,

	

llk,i>=le,>0IB�>,

	

i= 1,2,

	

(3.5)



where the SG breather IB �) is given by

by

IBn(B))= lim

	

1
(IA+(6i)A

_
(e2)) +( -1)"IA-(di)A+(e2)) } . (3 .6)

72ol -o2~ o"

Using eqs. (2 .17) and (2 .18), the SUSY transformations for these states are given

QIP� (0))= tn � E * e"
1
2ld:í(8)),

for i = 1, 2 and E=exp i-rr/4 . The SUSY algebra satisfies

*The author thanks A . LeClair for this point .
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QI<P�(0)>= m� E*e-012 1p�(e)),

Q2=in, e"=B,

	

Q2=tine-o= p,

	

QQ+QQ=0.

	

(3.8)

The central charge of the SUSY algebra vanishes for the two-soliton bound states.
This is true even for states like IK �,,K,,,) ® IA+A+) or IK �aKb..) ®IA-A-)
which have non-vanishing topological charges. This reflects that the central charge
of the SUSY algebra is not additive* and explains the failure to find factorizable
supersymmetric S-matrices for the case of additive central charges [23] .

If we apply the charge conjugation (2 .16) on these states, we get

C(I`ß� )) =

	

C(I tl;;)) = I V�� >,

	

for i = 1,2 .

	

(3.9)

This means that I

	

�) are real scalar particles and I tY� ) are Majorana fermions .
This is consistent with the expectation that the breathers of the lowest mass are
identified with the elementary particles associated with the real scalar field (b and
Majorana fermionic field ift in (2 .1). Since there is only one real scalar field
and Majorana fermion field in the action, we should identify 10,,> =- I-P,2,> and
IW�> = I W,? ) . Further justification for this identification comes later when we
study the scattering amplitudes for these breather states . From now on, we will
drop the superscript i .

3 .2 . THE S-MATRICES FOR THE SSG SOLLTONS AND BREATHERS

The scattering amplitudes for the SSG solitons and the breathers can be derived
from the residues of the three-soliton scattering amplitudes following the SG case
[1,4]. Since the S-matrix for the SSG solitons (2 .11) is the direct product of two
S-matrices, three-soliton scattering amplitudes are also factorized into two parts as
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shown in fig. 3 . The SG part is well known [1, 4] to be

°''	(3 .10)SsG(B)

	

sh6-tcos(ny/16) 1 = 1 sm'(-!(n- 21)y - q7r-I-iO
v

	

v

for the process A:'+B� --> At + B� .
For the RSG part, we consider two successive scattering processes as shown in

fig . 4. Using the definitions of the on-shell particles (2 .21) and (3.3) and the
S-matrices of the RSOS kinks (2.14), we obtain the following results:

S~i2c =X ,(e
)2-sa� /zr,

X 0�B ch4(29-i~r)

~Y�F

	

-t m�
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A±

K-

Fig. 3 . The factorized form of the SSG S-matrix.

shB+icos(ny/16) n-1 sin Z(3~(n-21)y-á~rr +'-iB~

'P�F

	

~h�F

~G�F ch4(29-iTr

- i � ) ~
V�,B

~
-ivr,~l �

)

-sh-

	

-sh ;(2B-i~r)

Bo� F+f;,

	

áv� , po�
i

x Bo� ch , (29-ia)

	

m �

	

BYr,r -sh4(29-ia)

	

i mnV

F+I;,

	

i m �

	

sh4(29-ivr) ~ po.

	

m �

	

ch4(29- i71)

o�B Y~�F

	

ch�F Y;,B

x

	

9~"B

	

ch á(29-i�)

	

-i m �

	

O,rF

	

ch,j(20-ia)

	

i

-sh4(20-ia) ~

	

Y� , sh 4(29-izr)

BO FrV"

	

BY",r Prh"
1 89;,

	

eh 4(29-ia)

	

i m"

	

B~"

	

-sh4(29-i~rr)

	

mr,X

F'Y"

	

m"

	

sh4(29-ílr)

	

~ FO,,

	

ch 4(29-i7r) J

(3 .11)



The overall factor X�(8) is given in terms of the prefactor in (2 .25),

Crossing symmetry is easily confirmed with X�(B) =Xn(i7r - B) and the charge
conjugation for the breathers changes 46� -> -4B� (fig . 4b). Uniiarüy of these
scattering amplitudes are also satisfied if the coefficient X�(8) satisfies

Using the recursive method Í6] we can find X�(8) io be

where
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e
CROSSED CHANNEL OF (A)

Fig. 4. (a)The breather-soliton scattering amplitude . (b) Crossed channelof (a).

U,(B
+ -!AO,,) U'( e - ;4B� ) .

	

()XI(O) =

	

2Tri

	

2Tri

	

3.12

X�(B) .V�( -8) = sh 2(0/2) +sin 2(ny/32)

X,(9) =x(0)Y,(0)Y,(i7r-0),

(3 .13)

(3 .14)

i

	

sh '-(n7ri + 0)
X(e) =~h(0/2) ,û=1 sh'-,(n-rri -®)

	

(3.15)
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and

r(-i0/27r)

	

°~

	

r2
(-(i8/2a) +I - ;)

"(e)
_
r(2-ie/2rr)

	

{r2(-(0/27r)+1-1)

r((ny/32-rr) - (iB/27r) +l)T( - (ny/32-rr) - (iB/27r) +1- 1)
x

r((rty/327r) - (iB/2-rr) +1 + l)r(-(ny/327r) - (iB/2-rr) +1- '-,) )

If we define X,,'(6) = Y�(B)Y� (i7r - 9),

X" (0)
X� ( - B) = sh 2 ( 0/2) + sin 2 (ny/32)

The scattering amplitudes which are not vanishing are for the processes which
preserve fermion numbers . This shows the consistency of our choice of on-shell
breathers .

3 .3 . THE S-MATRICES FOR THE BREATHERS

We follow the same procedure as before to compute the breathers scattering
amplitudes . The S-matrices are computed from the four-soliton scattering ampli-
tudes. The SG breather scattering amplitudes were derived also in refs . [1,4] and
the RSG part can be derived from the four-soliton scattering amplitudes of the
RSG kinks (fig. 5).

sh 2 (B/2)

Fig. 5. The breather-breather scattering amplitude .

(3 .16)

(3 .17)
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a

rlfi�r
sin(,,y/ 16) + sin(my/ 16)

1 +r

	

2ch(B/2)sh(B/2)
2sin(ny/l6)sin(my/l6)

m �m�, ch(B/2)

e

Fig. 6. The four-kink scattering amplitude.

The SG breather-breather scattering amplitudes are

she+isin ;~,(rl +rtt)yshe+isin ;-,,,(n-m)ySSGr~71(B) -
sh0-isin ;(r1+m)ysh0-isin ;(n-m)y

"' -1 sin=( ;= (m-n-21)y +'-I,iB)cos2( ;=(m+n-21)y +''-,iio)
sin2 (,~_(m-n-2i)y+1ii9)cos2(,L(M+n-21)y+ ;i0)'

for the process B�(BI)+Bn,(B2)~B�(BI)+B� ,(B2)with rt inl.
As shown in fig. 6, the RSOS form of four-kink scattering amplitudes can be

computed from (2 .25) . After a long but straightforward computation, we obtain the
following results:

111,9111,
2sin(ny/16)sin m(y/16)

Cm-,,,n�,ch(B/2)

1

	

sin(ny/1 6) + sin(my/16)
2ch(B/2)sh(B/2)

q5np� ,

	

V11 r4,1rt

sin(n y/ 16)-sin(my/16)

	

2i sin(ny /16)si n(my/ 16)
ur,

	

1 -
2ch(B/2)sh(B/2)

	

sh(B/2)
2isin( ƒ ty /16)sin(nay/16) sin(ny/16)-sin(my/16)

V,n0m

	

1 + im���, sh(B/2)

	

2ch(B/2)sh(B/2)

(3 .18)

( 3 .19)
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The prefactor Z��, (0) is defined by

Z..0)=- t ch~osh!o u,(o+ido
� +Zdo�,) U'(o + zdo� -

4 2 2

	

27Tt

	

27ri

U'(o -zdo� + 1dom) U'(o -zdo�-zdo, �)x

	

(3 .20)21ri

	

2ari

and satisfies Z(0) =Z��,(i7r- 0).
Unitarity is satisfied if

2dein)

sh Z 20

	

she 1(ilr- o)
Z� ,�(B)Z��,(-0) = she Zo+sin Z ,2(n +m)y shZ '-,(i7r-B) +sine ;,(n -m)y

Using eq . (3 .21), we can find

Fig . 7. Crossed channel of fig . 5.

(3 .21)

Znr�(e)=Y,+m(o)Yr+,n("r-0)Yr-rn(B)Yr-,�(tTr-0), (3 .22)

with Y�(0) as given in eq. (3 .16). Crossing symmetry is also satisfied. As shown in
fig . 7, the indices n and m should be switched and ny/16->7r-ny/16 for the
crossed channel . Again, only the processes which preserve fermion numbers have
non-vanishing amplitudes .
We want to emphasize that the SSG breathers I0�) and I � ) have given the

same S-matrix elements irrespective of the index i . For example, (0�0�, IS10�fi�, )
is the same as (~hz~,nISI~,2~,Z) . We have checked all other amplitudes and
confirmed the results explicitly. This justifies our previous identification of I0� ) =
Ion) and Ilk,,') =

Similar to the SG theory, we can identify the lowest SSG breathers with the
elementary scalar and Majorana fermion. In the SG theory, this has been justified
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because the breather S-matrix SS(I1) agrees with the result of perturbative compu-
tation . We claim that this is also true for the SSG theory because the perturbative
S-matrix of the SSG theory will be commuting with SUSY. Therefore, we can
identify the elementary fields 0, +/r in (2 .1) with 0� T I . The S-matrix (3 .19) for
m=n=1 is

S(9) = Yz(e)Y2(i7r -0 )

00 I 1 +

	

if

	

fch(0/2)sh(B/2) ch(B/2)

f

	

if-1 + ch(B/2)sh(B/2)ik kk ch(0/2)

00 0(k

1 ifsh(B/2)
if

sh(9/2) 1

where f= sin(y/16) . This result agrees with the known result of the SSG elemen-
tary particle S-matrix [6,241. This agreement is rather surprising because the two
derivations are based on two quite different criteria . The first derivation of the
S-matrix for the elementary particles are based on the factorizable S-matrix which
commutes with the on-shell SUSY without any central charge as explained in the
sect . 1 . We derived the result from the SSG soliton S-matrix which was obtained
by "unrestricting" the RSSG S-matrix . This is solely based on the perturbed CFT
formalism. Therefore, this agreement is a very nice confirmation for the validity of
eq . (2 .11) and the RSG S-matrix as well as the perturbed CFT formalism.
Furthermore, we can identify the arbitrary constant d arising from the factoriza-
tion procedure with the physical parameter in the SSG theory by d = y/8.
We clot. ° this section with the summary of the complete SSG S-matrices :

(3 .23)

SSG soliton-soliton sector [(2 .12),(2.25)] : S = SRSG®SSG

SSG soliton-breather sector [(3 .10), (3 .11)] : S = SRSG ®Ssc >

SSG breather-breather sector [(3 .18), (3 .19)] : S = SRSG ®SSGm~ (3 .24)
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In this section we restrict the SSG theory to get the perturbed superconformal
non-unitary model which is obtained from the coset CFT with a rational level. The
generalization to the FSSG theory and corresponding perturbed CFT is consid-
ered . Detailed results in this section will be published in ref. [27].

4.1 . COSET CFT WITH A RATIONAL LEVEL

Start with the toset

V+ =~dz Vƒ+ exp(ia �p) ,

The primary fields are

4. The perturbed superconformal non-unitary model

V,n
k
. n =eXp(tIX,n . n ~p ) Vrk ,

SU(2)K®SU(2)L
SU(2)K+L

We generalize the FF construction of the coset CFT in sect . 2 to arbitrary K with
a rational value of L. Following the standard procedure for integer L [25], we
introduce a scalar FF field cp and the ZK parafermions Wk. The vacuum charge ao
in (2 .5) and the screening operators (2 .6) are generalized to

k

	

(K; k)

	

(L; m)
" (K+L ;n) .

K
IXo

	

2(L+2)(K+L+2) '

2(L+2) 2(K+L+2)
_W(K-+ L + 2)

,

	

a,= V K(L+2)
(4 .2)

19m-<L+I,

	

1_<n_<L+K+1,

	

0<k<K.

	

(4.3)

We identify these fields with the primary fields of the coset CFT which are defined
from the branching functions of character decomposition by comparing their
conformal dimensions. The primary fields of the coset CFT can be expressed in
terms of the highest-weight states of each SU(2), and represented by

(4.4)

Using the dimension of (L ; m),d(L; m)_
,'-,(m2

- 1)/(L + 2) with 1 <m5L+1,
one can check that the dimensions of Vk. � and 4ik, � are identical .
To construct general non-unitary CFT's including conformal and superconfor-

mal models, we generalize the unitary coset CFT's with integer levels to the coset
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CFT's with rational levels [28] . Since any rational number can be represented by
two relative prime numbers p, q, we consider one of the level, say L, satisfies

L+2=

	

1

	

q>P .

	

(4.5)
q -P

Let us consider the SU(2) Kac-Moody algebra with a rational level L. The
central charge is the same as that of the integer level, c = 3Ll(L+2). The
primary fields are given by "admissible" representation [28] and represented by
two integers k, m

The corresponding conformai dimensions arc

0(L) X /,
1L)n' =<P .

P

(L)

	

where 0<k<q-p-1,

	

l<m_<p-l .

	

(4.6)

[m-k(L+2)]~- 1
4(L+2)

The fusion rules, BRST cohomology structure and modular invariant
functions [29-32] have been studied. The fusion algebra for the admissible repre-
sentations is given by

n+n'-nr=1 mod2

(4 .7)

partition

r.

	

(-)[(k+k')l(q-P)]0k+k'mod(q-n).m (4 .8)
nr=lrr-n'1+1

where [ -/ - ] denotes integer division without remainder. Therefore, the fusion
coefficients can be negative integers . For unitary model q -p = 1, only k = 0 is
allowed and the primary fields are reduced to those of integral representations.
One can see that the k = 0 sector of the primary fields forms the closed fusion

subalgebra of (4.8), which is identical to that of integral representations. Further-
more, the conformal dimensions of the primary fields in this sector are exactly the
same form as those of integral representations as one can see easily from (4 .7). The
dimensions of the representations i1 . this sector are finite . As we introduce the
k00 sectors, the number of primary fields which close the fusion algebra in-
creases. These fields in the k00 sectors have some exotic conformal dimensions
and correspond to infinite-dimensional representations. The correlation functions
for these sectors seem to be problematic [33].
The primary fields of the coset CFT (4.1) with the level (4.5) are defined from

the branching functions arising from the character decompositions as usual [28].
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Symbolically, we represent the primary fields of non-unitary models by

~k

	

- (K ; k) 0Ok�',~
(k,,m) .(kZ,n)- o(KIL)

~k�
(4 .9)

which are of the same form as (4 .4) with two integral representations replaced by
admissible ones. The fusion algebra can be immediately derived from (4 .8). Again,
the k =0 sector of P0_),(0,�)forms the closed fusion algebra with the smallest
number of primary fields and the conformal dimensions of the primary fields in the
k = 0 sector are exactly of the same form as those of the unitary CFT in (4.4).
Recalling that we identified (4.3) and (4 .4) because the conformal dimensions are
same, the identification can be extended to the rational value of L if we consider
only the k =0 sector for the coset CFT's. Only difference from the unitary models
is that the allowed ranges of (4.3) are modified according to the allowed ranges of
the SU(2) primary fields in (4.6) . If we introduce the k ~ 0 sectors in the coset
CFT's, there will be many additional primary fields with the conformal dimensions
which the FF primary fields can not have . In this paper, we are concentrating on
the k = 0 sector because the SSG theory is identified with the perturbed supercon-
formal minimal model via the FF construction . This does not rule out the
possibility of new coset CFT's which contain new sets of primary fields arising from
the k 1- 0 sectors .
The complete set of primary fields of the non-unitary models which can be

related to the FF construction is*

1_<m_<p-1, 1_<n_<p+K(g-p)-1, O_<k_<K .

(4 .10)

These modified ranges of the primary fields becomes important later when we
relate the restricted SSG theory to the perturbed superconformal non-unitary
model.

4.2. THE S-MATRICES OF PERTURBED SUPERMINIMAL CFT'S

Except for a few applications to statistical models such as Yang-Lee edge
singularity model, non-unitary models do not have equally good justifications as
CFT's. However, if we consider the massive perturbation of these models, the
resulting theories can be unitary in the sense that probability can be conserved .
The reason is that the Hilbert spaces of the massive quantum field theories are not

*After finishing this paper, the author was informed that the equivalent results were obtained for
the non-unitary models independently using the BRST cohomology method 134]. The author thanks
H. Tye for the information .
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composed of the primary fields and their descendents but of the particle states,
either elementary particles or solitons . As far as the S-matrices for these on-shell
particles are unitary, the perturbed theories are well defined .

Just like the unitary models [7], consider the perturbing field Opert to be
0(0,4,(0.3) with the dimension

2
*Opert)-1 K+L+2

We can show that there exists a conserved current under the perturbation which is
identified with fractional SUSY Q(K). The proof is the same as that for the unitary
models because the proof depends on the fusion rules and the conformal dimen-
sions, which are not changed for the rational level L as shown before. The only
difference is that the duality KH L does not exist for the non-unitary models . To
relate the perturbed non-unitary CFT's to restricted integrable field theories,
consider first the well-known case of the minimal model .
K= 1 in (4.1) gives the minimal model . The central charge

6( p-q) 2c = 1 -	(4 .12)
pq

is identical with the original model with a finite number of primary fields [26]. The
perturbing operator (4.11) corresponds to the 0t,3 operator. Since the perturbing
field and the screening operator give the SG potential, this perturbed theory is the
restriction of the SG theory [12,13] . For this rational value of L, the restriction of
the SG S-matrix based on the quantum group symmetry will be modified . The
deformation parameter q = -exp[-i-rr/(L + 2)] satisfies now q°= ±1 . This
means that the highest allowed spin of Wq[sl(2)] is p/2 - 1 . The restricted
S-matrix of the SG theory SRSG will be the same form as (2.14) with new bounds
on the allowed spin 0 < j <p/2 - 1 . By comparing the maximum spin with the
allowed maximum topological charges of perturbed CFT, we can identify the
perturbed minimal model with the RSG theory. Still, the unitarity of this per-
turbed model need to be checked .

Eguchi and Yang [12] studied the restricted model using the BRST formalism.
They found that the coupling constant y/81r (y is related to the coupling by
y=ß2/(1 -ß2/87r), different from the case of the SSG coupling (2 .10)) should
have one of the following values : p/(q -- p), 1/(n - 1), or irrational. The first is
the case where the truncation of multi-soliton Hilbert space reduces the SG theory
to the perturbed minimal model. The other two cases do not allow truncation and
correspond to perturbed c = 1 CFT.

Reshetikhin and Smirnov [13] examined the unitarity of the S-matrix of the
perturbed non-unitary CFT and further restricted the allowed coupling constants
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which can give unitary S-matrix as follows:

y

	

N 3
8-L+2

	

N1+1'

	

31+2

	

with N>-2, />-O . (4 .13)
7r

1= 0 corresponds to the perturbed unitary CFT which is the RSG theory with no
breathers . The S-matrix is just the RSG S-matrix (2 .14) . For 1 0 0, the model
corresponds to the perturbed non-unitary minimal model. Since this is related to
the restriction of the SG theory for the general coupling constant, the spectrum
consists of the RSG kinks and the SG breather and the S-matrices are given by
SRS) , SiisG and SR('screspectively . The maximum allowed spin for the kinks is
N/2- 1.
Now, consider the superconformal non-unitary model with K=2 in (4.1). With

the rational level (4 .5), the screening operators (2.6) are dimension 1 and with the
perturbing field give the SSG potential . Therefore, the perturbed superconformal
minimal model should be related to the restriction of the SSG theory. When L is
integer, the S-matrix becomes the RSSG S-matrix (2.9). This is the restriction of
the S-matrix of the SSG solitons of (2 .14) and (2 .25) . Recalling the tensor product
form of the S-matrices of the perturbed coset theories, the quantum group
structure of the theories depends only on the SG sector . Therefore, the unitarity
condition on the S-matrix (4.13) applies to this case too. The other sector of the
S-matrix SRs, remains unaffected because the deformation parameter of this
sector depends on K= 2, not on L. The restriction of the SSG S-matrices (3.24)
gives the S-matrices of the perturbed superconformal non-unitary model as fol-
lows:

RSSG kink-kink sector [(2.14),(2.25)] :

RSSG kink-breather sector [(3.10), (3 .11)]

S - SRSG® SRSG

S=S(n)

	

®S(n)
RSG SG

RSSG breather-breather sector [(3.18), (3 .19)] :

	

S= Siisc'I ®Ss"(';(4.14)

where the RSOS spins are restricted to be 0 <j < p/2 - 1 . Since the maximum
spin of the RSSG theory can be related to the maximum topological charge which
the primary fields (4.10) of the superminimal model can carry, the two models are
identified . (Integral topological charges can be carried only by the primary fields
Vi .1 , 0 <m<P- 1, and t_, = 2im-+ 1 =P - 1 .)
Expression (4 .14) needs some additional explanations. Restricting the S-matrices

in eq . (3 .24), we should consider the quantum group structure of the second factors
in eq. (3.24). Ss, is restricted to SRSG. Since the SG breathers are singlets of the
quantum group, the breather-breather S-matrices will be unchanged. The
breather-soliton sector is unchanged modulo the q-Clebsch-Gordan coefficients
occurring when we change the basis from the vertex form to the RSOS form . This
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is so because the S-matrices of this sector in (3 .10) do not depend on the
topological charges of the SG solitons . All these S-matrices are unitary and
crossing symmetric.
Let us consider the special case of p= 2, g = 2n + 3. The coupling constant is

_v 2

Bar

	

2n + 1
(4 .15)

Using the above expression, one can see easily that all the SSG solitons are
"frozen" and only the SSG breathers are left in the physical spectrum. This is the
supersymmetric generalization of ref. [9]. Especially, when n= 1 which corre-
sponds to the SUSY Yang-Lee edge singularity model, the spectrum consists of
one real scalar and one Majorana fermion with mass V-3 . The S-matrices are just
the breather-breather S-matrices [35].

4.3 . FRACTIONAL SUPERSYMMETRIC MODELS

All the previous results and analysis for the F. = 2 theory seem equally valid for
the case of K> 3. The S-matrix of the fractional supersymmetric sine-Gordon
theory (FSSG) can be conjectured as an i, nrestricted form of (1 .1), S =SRS ® Ssc
as has been done in ref . [7]. Note that the SG part is exactly the same as that of the
SSG theory. Therefore, if we generalize the value of the coupling constant L to
the genericone, the theory should contain the fractional supersymmetric breathers
in addition to FSSG solitons . The S-matrices of these states can be derived from
(2.14), considering three-soliton, and four-soliton scattering processes in the same
way as the SSG theory. The SG part remains the same as (3 .10) and (3 .18).

This can lead to the discovery of the FSSG action if we identify the lowest mass
breathers with the elementary fields appearing in the FSSG action. We can guess
the action from the perturbative expansion of the exact S-matrices. This is the
opposite direction to the identification of the lowest mass breather with the
elementary scalar field in the SG theory. Furthermore, as argued in sect . 3,
the S-matrices of the FSSG breathers and solitons for the special non-unitary
couplings can be related to the perturbed non-unitary CFT's with fractional SUSY
[27].

Consider the limit of K --> oo with the rational value of L in (4.5) . From the
structure of the coset CFT (4.1) and its perturbation with dimension (4 .11), this
theory is easily identified with perturbed SU(2)WZWtheory with a rational level
perturbed by a JJ operator where J (J) is the current of the theory,

d
S=SWzw +-I d-Z ~Ja(Z)ju(z) .

	

(4 .16)
21ri u

The S-matrix of this model is the limit K -> oo of SRS) ® SRS) where the second
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S-matrix includes not only the RSG S-matrix but also the breather S-matrices
described above. Since the allowed spin of the RSG theory is unbounded in this
limit, the first factor SS)R becomes unrestricted . The particle spectrum of the
theory is then

IA±) ® IK� h )

	

and

	

IA±) ® IB� ) .

	

(4 .17)

The spin a, b is restricted ùp to P/2 - 1 and IB� ) denotes the SG breathers with
mass m� .
As argued in ref. [7), the first factor in the S-matrix becomes the S-matrix of the

SU(2) Gross-Neveu model denoted by S" and total S-matrix is given by

Swzw(B) =
Srac(e) ® {,$RSG (B)~SSG(e)1SSG'�'(B)11

	

(4.18)

where Sr a'(9) = "MK-wSSG (x = eO/K+2, 9 = -e-i(K+2)) is explicitly computed
in ref. [7] and all other factors are given in eys. (2 .14), (3 .10), and (3 .18) .
For the special coupling (4 .15), the RSG solitons are completely frozen out and

the only spectrum of the perturbed WZW theory is the breathers with the extra
topological charge ±1, IA±) ® IB� ) and the S-matrix is explicitly written as

Swzw(e) =S"t( 0) . SSG nt>(e) .

	

(4.19)

Although WZWmodels with rational levels seem non-local because the Wess-
Zumino terms are not single-valued, the special cases of L = -1, - 2 give the
local WZW action . For L= -2, since the SSG coupling constant y vanishes, the
SG S-matrices become just identity and the WZWS-matrix (4.18) becomes Sra.

For L = -1, all breathers become unstable and only the SG solitons are left .
These negative integer level SUM WZW models can be identified with perturbed
WZWmodel based on non-compact group SU(1,1) with level 1, 2. Note that even
though we considered the perturbation of non-unitary CFT, the S-matrices of the
massive on-shell particles (4 .18) are perfectly unitary and crossing symmetric .

5. Conclusions

In this paper, we derived the complete S-matrices of the SSG theory including
the SSG soliton bound states. We have checked the validity of our derivation by
comparing one special case of our results with the known result. Since our
derivation of the SSG S-matrices is based on the duality of the coset CFT and the
result of the SG theory, this check shows the usefulness of the conformal field
theoret.c approach to the integrable field theories .
We showed that the results of the SSG theory can be applied to the perturbed

superconformal minimal model. We defined the non-unitary models by extending
the

	

t construction to SU(2)'s with the rational levels and their admissible
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representations . While the primary fields of the coset CFT's are richer, we
considered only the smallest subset of the primary fields which form the closed
fusion algebra because only these fields are appearing in the FF construction. The
perturbed superconformal minimal model is related to the restriction of the SSG
theory using the FF formalism. Although we study the massive perturbation of
non-unitary model, the final S-matrices are unitary if the coupling constants are
restricted to the certain values . The very existence of bound states (breathers)
reflects the fact that some primary fields have negative conformal dimensions.
The generalization of the superconformal minimal model to the coset CFT's

with the higher integer level of K is straightforward. The S-matrices of the FSSG
theories with both solitons and breathers can be derived in the same way as the
SSG theory . The restriction of the FSSG theories can be also related to
the perturbed minim-1 (including non-unitary) CFT's which are constructed from
the coset CFT's as before. Also, we presented some special limiting cases which
are interesting. A detailed analysis will be reported in another paper [27] .
The quantum group structure of the SSG theory is based on that of the SG

theory because the S-matrix of the SSG theory is the tensor product of the
S-matrix of the SG theory with the RSG factor. The quantum group symmetry has
been defined as an on-shell symmetry acting on the on-shell particles and thus
commuting with the S-matrix . The recent derivation of the quantum group
symmetry from the SG action [15] which can be applied to the SSG and FSSG
theories can justify the existence of these symmetries for the generalized models
including the SSG theory. Using these quantum group symmetries, one may
construct the on-shell SSG and FSSG solitons explicitly in terms of the elementary
fields.
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